Application of response surface methodology for protein enrichment of cassava peel as animal feed by the white-rot fungus Panus tigrinus M609RQY

Response surface methodology (RSM) was employed to optimize the process conditions for production of protein-enriched animal feed from cassava peel by a locally isolated white rot fungus Panus tigrinus. Face-Centered Central Composite Design (FCCCD) with three variables (pH, inoculum size and mois...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ruqayyah, T.I.D., Jamal, Parveen, Alam, Md Zahangir, Mirghani, Mohamed Elwathig Saeed, Jaswir, Irwandi, Ramli, Nazaruddin
التنسيق: مقال
اللغة:English
منشور في: Elsevier Inc. 2014
الموضوعات:
الوصول للمادة أونلاين:http://irep.iium.edu.my/40183/1/Food_hydrocolloids_paper_published_%2C2014.pdf
http://irep.iium.edu.my/40183/
http://www.journals.elsevier.com/food-hydrocolloids
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Response surface methodology (RSM) was employed to optimize the process conditions for production of protein-enriched animal feed from cassava peel by a locally isolated white rot fungus Panus tigrinus. Face-Centered Central Composite Design (FCCCD) with three variables (pH, inoculum size and moisture content) was used to determine the effect of these operational parameters on the protein increase of cassava peel as animal feed under solid-state fermentation. A significant quadratic model was obtained for protein increase using this design. Results of the statistical analysis showed that a significant (P < 0.05) linear effect was obtained for moisture content, while only the interaction effect between moisture content and inoculum size was significant (P < 0.01). The optimum process combination was found to be 75% (v/w) of moisture content, a pH of 5.3 and 7% (v/w) inoculum size. A maximum increase of protein (55.16%) was obtained during 15-day of solid-state fermentation