Design of QFT-based self-tuning deadbeat controller

This paper presents a design method of self-tuning Quantitative Feedback Theory (QFT) by using improved deadbeat control algorithm. QFT is a technique to achieve robust control with pre-defined specifications whereas deadbeat is an algorithm that could bring the output to steady state with minimum...

Full description

Saved in:
Bibliographic Details
Main Authors: Mansor, Hasmah, Mohd Noor, Samsul Bahari
Format: Article
Language:English
Published: World Academy of Science, Engineering and Technology (W A S E T) 2013
Subjects:
Online Access:http://irep.iium.edu.my/31072/1/WASETpublished.pdf
http://irep.iium.edu.my/31072/
http://www.waset.org
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.iium.irep.31072
record_format dspace
spelling my.iium.irep.310722013-07-31T01:14:47Z http://irep.iium.edu.my/31072/ Design of QFT-based self-tuning deadbeat controller Mansor, Hasmah Mohd Noor, Samsul Bahari S Agriculture (General) T Technology (General) This paper presents a design method of self-tuning Quantitative Feedback Theory (QFT) by using improved deadbeat control algorithm. QFT is a technique to achieve robust control with pre-defined specifications whereas deadbeat is an algorithm that could bring the output to steady state with minimum step size. Nevertheless, usually there are large peaks in the deadbeat response.By integrating QFT specifications into deadbeat algorithm, the large peaks could be tolerated. On the other hand, emerging QFT with adaptive element will produce a robust controller with wider coverage of uncertainty. By combining QFT-based deadbeat algorithm and adaptive element, superior controller that is called self tuning QFT-based deadbeat controller could be achieved. The output response that is fast, robust and adaptive is expected. Using a grain dryer plant model as a pilot case-study, the performance of the proposed method has been evaluated and analyzed. Grain drying process is very complex with highly nonlinear behaviour, long delay, affected by environmental changes and affected by disturbances. Performance comparisons have been performed between the proposed self-tuning QFT-based deadbeat, standard QFT and standard dead-beat controllers. The efficiency of the self-tuning QFT based dead-beat controller has been proven from the tests results in terms of controller’s parameters are updated online, less percentage of overshoot and settling time especially when there are variations in the plant. World Academy of Science, Engineering and Technology (W A S E T) 2013-07 Article REM application/pdf en http://irep.iium.edu.my/31072/1/WASETpublished.pdf Mansor, Hasmah and Mohd Noor, Samsul Bahari (2013) Design of QFT-based self-tuning deadbeat controller. World Academy of Science, Engineering and Technology, 79. pp. 1291-1293. ISSN 1307-6884 http://www.waset.org
institution Universiti Islam Antarabangsa Malaysia
building IIUM Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider International Islamic University Malaysia
content_source IIUM Repository (IREP)
url_provider http://irep.iium.edu.my/
language English
topic S Agriculture (General)
T Technology (General)
spellingShingle S Agriculture (General)
T Technology (General)
Mansor, Hasmah
Mohd Noor, Samsul Bahari
Design of QFT-based self-tuning deadbeat controller
description This paper presents a design method of self-tuning Quantitative Feedback Theory (QFT) by using improved deadbeat control algorithm. QFT is a technique to achieve robust control with pre-defined specifications whereas deadbeat is an algorithm that could bring the output to steady state with minimum step size. Nevertheless, usually there are large peaks in the deadbeat response.By integrating QFT specifications into deadbeat algorithm, the large peaks could be tolerated. On the other hand, emerging QFT with adaptive element will produce a robust controller with wider coverage of uncertainty. By combining QFT-based deadbeat algorithm and adaptive element, superior controller that is called self tuning QFT-based deadbeat controller could be achieved. The output response that is fast, robust and adaptive is expected. Using a grain dryer plant model as a pilot case-study, the performance of the proposed method has been evaluated and analyzed. Grain drying process is very complex with highly nonlinear behaviour, long delay, affected by environmental changes and affected by disturbances. Performance comparisons have been performed between the proposed self-tuning QFT-based deadbeat, standard QFT and standard dead-beat controllers. The efficiency of the self-tuning QFT based dead-beat controller has been proven from the tests results in terms of controller’s parameters are updated online, less percentage of overshoot and settling time especially when there are variations in the plant.
format Article
author Mansor, Hasmah
Mohd Noor, Samsul Bahari
author_facet Mansor, Hasmah
Mohd Noor, Samsul Bahari
author_sort Mansor, Hasmah
title Design of QFT-based self-tuning deadbeat controller
title_short Design of QFT-based self-tuning deadbeat controller
title_full Design of QFT-based self-tuning deadbeat controller
title_fullStr Design of QFT-based self-tuning deadbeat controller
title_full_unstemmed Design of QFT-based self-tuning deadbeat controller
title_sort design of qft-based self-tuning deadbeat controller
publisher World Academy of Science, Engineering and Technology (W A S E T)
publishDate 2013
url http://irep.iium.edu.my/31072/1/WASETpublished.pdf
http://irep.iium.edu.my/31072/
http://www.waset.org
_version_ 1643609979799732224
score 13.211869