Performance comparison of various YOLO architectures on object detection of UAV images
Today, the rapid development of deep learning offers an extraordinary opportunity to enhance the performance and efficiency of various industries, including business, the military, medicine, and transportation. Using deep learning algorithms in the transportation industry, for instance, makes UAVs v...
Saved in:
Main Authors: | , , , |
---|---|
格式: | Conference or Workshop Item |
語言: | English English English |
出版: |
IEEE
2022
|
主題: | |
在線閱讀: | http://irep.iium.edu.my/101864/7/101864_Performance%20comparison%20of%20various%20YOLO%20Architectures%20on%20Object%20Detection%20of%20UAV%20images.pdf http://irep.iium.edu.my/101864/8/101864_Performance%20comparison%20of%20various%20YOLO%20Architectures%20on%20Object%20Detection%20of%20UAV%20images_SCOPUS.pdf http://irep.iium.edu.my/101864/1/TeddyUAV-YOLOv2PDFexpress.pdf http://irep.iium.edu.my/101864/ https://icsima.ieeemy-ims.org/22/program-schedule/ https://doi.org/10.1109/ICSIMA55652.2022.9928938 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
成為第一個發表評論!