DEVELOPMENT AND TESTING OF UNIVERSAL PRESSURE DROP MODELS IN PIPELINES USING ABDUCTIVE AND ARTIFICIAL NEURAL NETWORKS
Determination of pressure drop in pipeline system is difficult. Conventional methods (empirical correlations and mechanistic methods) were not successful in providing accurate estimate. Artificial Neural Networks and polynomial Group Method of Data Handling techniques had received wide recognitio...
保存先:
第一著者: | AYOUB MOHAMMED, MOHAMMED ABDALLA |
---|---|
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2011
|
主題: | |
オンライン・アクセス: | http://utpedia.utp.edu.my/8907/1/2011%20PhD-Development%20And%20Testing%20Of%20Universal%20Pressure%20Drop%20odels%20In%20Pipelines%20Using%20Abductive%20An.pdf http://utpedia.utp.edu.my/8907/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Development of a Universal Pressure Drop Model in Pipelines Using Group Method of Data Handling-Type Neural Networks Model
著者:: Ayoub, Mohammed Abdalla, 等
出版事項: (2013) -
Application of Resilient Back-Propagation Neural Networks
for Generating a Universal Pressure Drop Model in Pipelines
著者:: Ayoub, Mohammed A. Ayoub, 等
出版事項: (2011) -
Development of a Universal Artificial Neural Network Model for Pressure Loss Estimation in Pipeline Systems; A comparative Study
著者:: Ayoub, Mohammed Abdalla, 等
出版事項: (2010) -
Artificial Neural Network Model for Predicting Bottomhole Flowing Pressure in Vertical Multiphase Flow
著者:: Osman, Sayed Ahmed, 等
出版事項: (2005) -
The Use of Artificial Neural Networks and Genetic Algorithms for Effectively Optimizing Production from Multiphase Flow Wells
著者:: Ayoub, Mohammed Abdalla
出版事項: (2010)