Heterogeneous Catalysis Transesterification of Waste Cooking Oil (WCO) and Parametric Optimization

Waste cooking oil (WCO) is considered to be a potential feedstock for biodiesel due to its low cost, availability in avoiding the food-for-fuel competition of the same oil resources, and also associated with WCO disposal. Hence, the WCO was chosen for this study to investigate the transesterificatio...

Full description

Saved in:
Bibliographic Details
Main Author: Na chatree, Nichapa
Format: Final Year Project
Language:English
Published: IRC 2015
Subjects:
Online Access:http://utpedia.utp.edu.my/16290/1/FYP_Dissertation_Nichapa%20Na%20chatree_15237_CHE_Sep15.pdf
http://utpedia.utp.edu.my/16290/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utp-utpedia.16290
record_format eprints
spelling my-utp-utpedia.162902017-01-25T09:35:05Z http://utpedia.utp.edu.my/16290/ Heterogeneous Catalysis Transesterification of Waste Cooking Oil (WCO) and Parametric Optimization Na chatree, Nichapa TP Chemical technology Waste cooking oil (WCO) is considered to be a potential feedstock for biodiesel due to its low cost, availability in avoiding the food-for-fuel competition of the same oil resources, and also associated with WCO disposal. Hence, the WCO was chosen for this study to investigate the transesterification reaction of microwave energy pretreated WCO using heterogeneous catalyst derived from chicken bones from the calcination temperature of 900 °C (C900). WCO and catalyst characterization were performed. Two models; alkali heterogeneous catalysis transesterification and microwave energy pretreated alkali heterogeneous catalysis transesterification, were designed of 62 experiments to investigate the effect of five reaction variables; Methanol to oil molar ratio, catalyst concentration, reaction temperature, reaction time and microwave heating time. The interaction effects of reaction variables were studied using statistical tool of Central Composite Design (CCD) technique of Response Surface Methodology (RSM). It is found that reaction temperature and reaction time are the significant variables for heterogeneous catalysis transesterification whereas reaction time, microwave heating time and C900 concentration were dominant variables to the FAME yield. The optimum FAME yield of microwave energy pretreated transesterification was at 91.94 % and qualitatively higher than that of alkali heterogeneous catalysis transesterification which gained 98.308 %. The FAME yield conditions proved that microwave energy can improve the transesterification and enhance the product yield up to 3.38 times higher than alkali heterogeneous catalysis transesterification within a shorter length of time IRC 2015-09 Final Year Project NonPeerReviewed application/pdf en http://utpedia.utp.edu.my/16290/1/FYP_Dissertation_Nichapa%20Na%20chatree_15237_CHE_Sep15.pdf Na chatree, Nichapa (2015) Heterogeneous Catalysis Transesterification of Waste Cooking Oil (WCO) and Parametric Optimization. IRC, Universiti Teknologi PETRONAS. (Unpublished)
institution Universiti Teknologi Petronas
building UTP Resource Centre
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Teknologi Petronas
content_source UTP Electronic and Digitized Intellectual Asset
url_provider http://utpedia.utp.edu.my/
language English
topic TP Chemical technology
spellingShingle TP Chemical technology
Na chatree, Nichapa
Heterogeneous Catalysis Transesterification of Waste Cooking Oil (WCO) and Parametric Optimization
description Waste cooking oil (WCO) is considered to be a potential feedstock for biodiesel due to its low cost, availability in avoiding the food-for-fuel competition of the same oil resources, and also associated with WCO disposal. Hence, the WCO was chosen for this study to investigate the transesterification reaction of microwave energy pretreated WCO using heterogeneous catalyst derived from chicken bones from the calcination temperature of 900 °C (C900). WCO and catalyst characterization were performed. Two models; alkali heterogeneous catalysis transesterification and microwave energy pretreated alkali heterogeneous catalysis transesterification, were designed of 62 experiments to investigate the effect of five reaction variables; Methanol to oil molar ratio, catalyst concentration, reaction temperature, reaction time and microwave heating time. The interaction effects of reaction variables were studied using statistical tool of Central Composite Design (CCD) technique of Response Surface Methodology (RSM). It is found that reaction temperature and reaction time are the significant variables for heterogeneous catalysis transesterification whereas reaction time, microwave heating time and C900 concentration were dominant variables to the FAME yield. The optimum FAME yield of microwave energy pretreated transesterification was at 91.94 % and qualitatively higher than that of alkali heterogeneous catalysis transesterification which gained 98.308 %. The FAME yield conditions proved that microwave energy can improve the transesterification and enhance the product yield up to 3.38 times higher than alkali heterogeneous catalysis transesterification within a shorter length of time
format Final Year Project
author Na chatree, Nichapa
author_facet Na chatree, Nichapa
author_sort Na chatree, Nichapa
title Heterogeneous Catalysis Transesterification of Waste Cooking Oil (WCO) and Parametric Optimization
title_short Heterogeneous Catalysis Transesterification of Waste Cooking Oil (WCO) and Parametric Optimization
title_full Heterogeneous Catalysis Transesterification of Waste Cooking Oil (WCO) and Parametric Optimization
title_fullStr Heterogeneous Catalysis Transesterification of Waste Cooking Oil (WCO) and Parametric Optimization
title_full_unstemmed Heterogeneous Catalysis Transesterification of Waste Cooking Oil (WCO) and Parametric Optimization
title_sort heterogeneous catalysis transesterification of waste cooking oil (wco) and parametric optimization
publisher IRC
publishDate 2015
url http://utpedia.utp.edu.my/16290/1/FYP_Dissertation_Nichapa%20Na%20chatree_15237_CHE_Sep15.pdf
http://utpedia.utp.edu.my/16290/
_version_ 1739832240514269184
score 13.211869