Computational methods for a copula-based markov chain model

Copula-based Markov models have gained recognition as powerful tools for capturing intricate dependence structures in time series datasets. This study focuses on estimating parameters and assessing the performance of Clayton and Gaussian copulas in modelling Laplace distributed time series data. The...

Full description

Saved in:
Bibliographic Details
Main Author: Lee, Chin Yee
Format: Final Year Project / Dissertation / Thesis
Published: 2024
Subjects:
Online Access:http://eprints.utar.edu.my/6839/1/AM_2200494_Final_Lee_Chin_Yee.pdf
http://eprints.utar.edu.my/6839/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-utar-eprints.6839
record_format eprints
spelling my-utar-eprints.68392024-12-06T00:20:29Z Computational methods for a copula-based markov chain model Lee, Chin Yee HA Statistics QA Mathematics Copula-based Markov models have gained recognition as powerful tools for capturing intricate dependence structures in time series datasets. This study focuses on estimating parameters and assessing the performance of Clayton and Gaussian copulas in modelling Laplace distributed time series data. The Clayton and Gaussian copulas were chosen due to the Clayton copula’s capability to model tail dependencies and the Gaussian copula’s alignment with the data’s pseudo-observations. The ten-year daily log return of the SPX500 index is used in this study as the preliminary analysis revealed that it follows a Laplace distribution rather than the traditionally used t-distribution for modelling tail behaviour. Parameters were estimated using Maximum Likelihood Estimation (MLE) and the inversion of Kendall’s Tau, yielding feasible results for both copulas. The model’s performance was evaluated using the Root Mean Square Error (RMSE), with the Clayton copula achieving a lower RMSE of 0.01332 compared to 0.01541 for the Gaussian copula, indicating a better fit to the data. This study underscores the importance of selecting appropriate copulas, marginal distributions and estimation methods, demonstrating that the Clayton copula, combined with MLE, offers superior performance for modelling the Laplace distributed SPX500’s daily log returns. 2024 Final Year Project / Dissertation / Thesis NonPeerReviewed application/pdf http://eprints.utar.edu.my/6839/1/AM_2200494_Final_Lee_Chin_Yee.pdf Lee, Chin Yee (2024) Computational methods for a copula-based markov chain model. Final Year Project, UTAR. http://eprints.utar.edu.my/6839/
institution Universiti Tunku Abdul Rahman
building UTAR Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tunku Abdul Rahman
content_source UTAR Institutional Repository
url_provider http://eprints.utar.edu.my
topic HA Statistics
QA Mathematics
spellingShingle HA Statistics
QA Mathematics
Lee, Chin Yee
Computational methods for a copula-based markov chain model
description Copula-based Markov models have gained recognition as powerful tools for capturing intricate dependence structures in time series datasets. This study focuses on estimating parameters and assessing the performance of Clayton and Gaussian copulas in modelling Laplace distributed time series data. The Clayton and Gaussian copulas were chosen due to the Clayton copula’s capability to model tail dependencies and the Gaussian copula’s alignment with the data’s pseudo-observations. The ten-year daily log return of the SPX500 index is used in this study as the preliminary analysis revealed that it follows a Laplace distribution rather than the traditionally used t-distribution for modelling tail behaviour. Parameters were estimated using Maximum Likelihood Estimation (MLE) and the inversion of Kendall’s Tau, yielding feasible results for both copulas. The model’s performance was evaluated using the Root Mean Square Error (RMSE), with the Clayton copula achieving a lower RMSE of 0.01332 compared to 0.01541 for the Gaussian copula, indicating a better fit to the data. This study underscores the importance of selecting appropriate copulas, marginal distributions and estimation methods, demonstrating that the Clayton copula, combined with MLE, offers superior performance for modelling the Laplace distributed SPX500’s daily log returns.
format Final Year Project / Dissertation / Thesis
author Lee, Chin Yee
author_facet Lee, Chin Yee
author_sort Lee, Chin Yee
title Computational methods for a copula-based markov chain model
title_short Computational methods for a copula-based markov chain model
title_full Computational methods for a copula-based markov chain model
title_fullStr Computational methods for a copula-based markov chain model
title_full_unstemmed Computational methods for a copula-based markov chain model
title_sort computational methods for a copula-based markov chain model
publishDate 2024
url http://eprints.utar.edu.my/6839/1/AM_2200494_Final_Lee_Chin_Yee.pdf
http://eprints.utar.edu.my/6839/
_version_ 1818839910200639488
score 13.223943