Performance comparison between generative adversarial networks (GAN) variants in generating comic character images.

Generative Adversarial Networks (GANs) have emerged as a powerful framework for generating realistic and diverse data, including images. This project aims to provide a comprehensive understanding of GANs and their applications in anime face generation. Through theoretical investigation, practical im...

詳細記述

保存先:
書誌詳細
第一著者: Tan, Jia Ler
フォーマット: Final Year Project / Dissertation / Thesis
出版事項: 2024
主題:
オンライン・アクセス:http://eprints.utar.edu.my/6674/1/fyp_CS_2024_TJL.pdf
http://eprints.utar.edu.my/6674/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!