Biological studies of novel aspirin-chalcone derivatives bearing variable substituents

The evolution of drug resistant bacteria has now becoming a major concern in the search for new antibacterial agent. Ongoing interest has also developing to find a new class of compounds with antioxidant properties. Herein, a series of hydroxylated chalcones 1a-g and aspirin-chalcone derivatives 2...

Full description

Saved in:
Bibliographic Details
Main Authors: Norsyafikah Asyilla, Nordin, Abdul Razak, Ibrahim, Zainab, Ngaini
Format: Article
Language:English
English
Published: 2020
Subjects:
Online Access:http://eprints.unisza.edu.my/7243/1/FH02-FF-20-42809.pdf
http://eprints.unisza.edu.my/7243/2/FH02-FF-20-47839.pdf
http://eprints.unisza.edu.my/7243/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The evolution of drug resistant bacteria has now becoming a major concern in the search for new antibacterial agent. Ongoing interest has also developing to find a new class of compounds with antioxidant properties. Herein, a series of hydroxylated chalcones 1a-g and aspirin-chalcone derivatives 2a-g were successfully synthesised for antibacterial and antioxidant properties. Chalcones 1a-g were prepared by Claisen-Schmidt condensation of 4-hydroxyacetophenone and benzaldehyde derivatives, while 2a-g were synthesised via esterification of aspirin with 1a-g. All the synthesised compounds were elucidated using CHNS elemental analysis, FTIR, 1H and 13C NMR spectroscopy, and X-ray crystallography. All compounds were evaluated for antibacterial assay via disc diffusion method and antioxidant assay using stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Only 1a showed moderate activity against Escherichia coli, while 1b-g and 2a-g showed no inhibition against E. coli and Staphylococcus aureus in comparison ampicillin as standard antibiotic. Compounds 1b-g and 2a-g having various substituents contributed to bulky molecular structures and caused difficult penetration into the cell membrane thus, unable to inhibit the bacterial growth. Compounds 1a-g and 2a-g also displayed poor antioxidant properties on DPPH in comparison to ascorbic acid due to low phenolic pharmacophore. The formation of bulky structures for 2a-g have hindered the antioxidant properties compared to 1a-g.