Age prediction on face features via multiple classifiers
Human age recognition becomes increasingly important due to its beneficial employments alongside security and computer applications. Age prediction from face picture has a lot of challenges, such as insufficiency of training data and uncontrollable situation. In this research, we address these criti...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | http://eprints.unisza.edu.my/1667/1/FH03-FIK-18-14464.jpg http://eprints.unisza.edu.my/1667/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human age recognition becomes increasingly important due to its beneficial employments alongside security and computer applications. Age prediction from face picture has a lot of challenges, such as insufficiency of training data and uncontrollable situation. In this research, we address these critical issues by introducing an improved age prediction algorithm using Active Appearance Models (AAM) and three classifiers, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Support Vector Regression (SVR) to improve the precision of age prediction based on the present methods. In this algorithm, the traits of the facial pictures are explicated as traits vectors by AAM model, and the classifiers are utilized to estimate the age. We were able to recognize that the accuracy of SVR algorithm is better than the accuracy of KNN and SVM classifiers. |
---|