Atomic force microscopy as a tool for asymmetric polymeric membrane characterization
Atomic force microscopy (AFM) has a wide range of applications and is rapidly growing in research and development. This powerful technique has been used to visualize surfaces both in liquid or gas media. It has been considered as an effective tool to investigate the surface structure for its ability...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universiti Kebangsaan Malaysia
2011
|
Online Access: | http://journalarticle.ukm.my/704/1/08_Abdul_Wahab.pdf http://journalarticle.ukm.my/704/ http://www.ukm.my/~jsm/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-ukm.journal.704 |
---|---|
record_format |
eprints |
spelling |
my-ukm.journal.7042016-12-14T06:27:57Z http://journalarticle.ukm.my/704/ Atomic force microscopy as a tool for asymmetric polymeric membrane characterization Abdul Wahab Mohammad, Nidal Hilal, Lim, Ying Pei Indok Nurul Hasyimah Mohd Amin, Rafeqah Raslan, Atomic force microscopy (AFM) has a wide range of applications and is rapidly growing in research and development. This powerful technique has been used to visualize surfaces both in liquid or gas media. It has been considered as an effective tool to investigate the surface structure for its ability to generate high-resolution 3D images at a subnanometer range without sample pretreatment. In this paper, the use of AFM to characterize the membrane roughness is presented for commercial and self-prepared membranes for specific applications. Surface roughness has been regarded as one of the most important surface properties, and has significant effect in membrane permeability and fouling behaviour. Several scan areas were used to compare surface roughness for different membrane samples. Characterization of the surfaces was achieved by measuring the average roughness (Ra) and root mean square roughness (Rrms) of the membrane. AFM image shows that the membrane surface was composed entirely of peaks and valleys. Surface roughness is substantially greater for commercial available hydrophobic membranes, in contrast to self-prepared membranes. This study also shows that foulants deposited on membrane surface would increase the membrane roughness. Universiti Kebangsaan Malaysia 2011-03 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/704/1/08_Abdul_Wahab.pdf Abdul Wahab Mohammad, and Nidal Hilal, and Lim, Ying Pei and Indok Nurul Hasyimah Mohd Amin, and Rafeqah Raslan, (2011) Atomic force microscopy as a tool for asymmetric polymeric membrane characterization. Sains Malaysiana, 40 (3). pp. 237-244. ISSN 0126-6039 http://www.ukm.my/~jsm/ |
institution |
Universiti Kebangsaan Malaysia |
building |
Perpustakaan Tun Sri Lanang Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Kebangsaan Malaysia |
content_source |
UKM Journal Article Repository |
url_provider |
http://journalarticle.ukm.my/ |
language |
English |
description |
Atomic force microscopy (AFM) has a wide range of applications and is rapidly growing in research and development. This powerful technique has been used to visualize surfaces both in liquid or gas media. It has been considered as an effective tool to investigate the surface structure for its ability to generate high-resolution 3D images at a subnanometer range without sample pretreatment. In this paper, the use of AFM to characterize the membrane roughness is presented for commercial and self-prepared membranes for specific applications. Surface roughness has been regarded as one of the most important surface properties, and has significant effect in membrane permeability and fouling behaviour. Several scan areas were used to compare surface roughness for different membrane samples. Characterization of the surfaces was achieved by measuring the average roughness (Ra) and root mean square roughness (Rrms) of the membrane. AFM image shows that the membrane surface was composed entirely of peaks and valleys. Surface roughness is substantially greater for commercial available hydrophobic membranes, in contrast to self-prepared membranes. This study also shows that foulants deposited on membrane surface would increase the membrane roughness. |
format |
Article |
author |
Abdul Wahab Mohammad, Nidal Hilal, Lim, Ying Pei Indok Nurul Hasyimah Mohd Amin, Rafeqah Raslan, |
spellingShingle |
Abdul Wahab Mohammad, Nidal Hilal, Lim, Ying Pei Indok Nurul Hasyimah Mohd Amin, Rafeqah Raslan, Atomic force microscopy as a tool for asymmetric polymeric membrane characterization |
author_facet |
Abdul Wahab Mohammad, Nidal Hilal, Lim, Ying Pei Indok Nurul Hasyimah Mohd Amin, Rafeqah Raslan, |
author_sort |
Abdul Wahab Mohammad, |
title |
Atomic force microscopy as a tool for asymmetric polymeric membrane characterization |
title_short |
Atomic force microscopy as a tool for asymmetric polymeric membrane characterization |
title_full |
Atomic force microscopy as a tool for asymmetric polymeric membrane characterization |
title_fullStr |
Atomic force microscopy as a tool for asymmetric polymeric membrane characterization |
title_full_unstemmed |
Atomic force microscopy as a tool for asymmetric polymeric membrane characterization |
title_sort |
atomic force microscopy as a tool for asymmetric polymeric membrane characterization |
publisher |
Universiti Kebangsaan Malaysia |
publishDate |
2011 |
url |
http://journalarticle.ukm.my/704/1/08_Abdul_Wahab.pdf http://journalarticle.ukm.my/704/ http://www.ukm.my/~jsm/ |
_version_ |
1643734798629339136 |
score |
13.211869 |