Smoothing rope skipping data using gaussian scale-space Method

The scale-space method has been widely used in handling image data at multiple scales. Application of Gaussian filtering in different field includes human vision problem, medical data, financial data and electroencephalogram (EEG) signal. The main purpose of this paper is to apply the Gaussian scale...

Full description

Saved in:
Bibliographic Details
Main Authors: Nor Atikah Ab Ghani,, Azmin Sham Rambely,, Samsul Ariffin Abdul Karim,
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2013
Online Access:http://journalarticle.ukm.my/6491/1/jqma-9-1-paper10.pdf
http://journalarticle.ukm.my/6491/
http://www.ukm.my/jqma/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-ukm.journal.6491
record_format eprints
spelling my-ukm.journal.64912016-12-14T06:41:20Z http://journalarticle.ukm.my/6491/ Smoothing rope skipping data using gaussian scale-space Method Nor Atikah Ab Ghani, Azmin Sham Rambely, Samsul Ariffin Abdul Karim, The scale-space method has been widely used in handling image data at multiple scales. Application of Gaussian filtering in different field includes human vision problem, medical data, financial data and electroencephalogram (EEG) signal. The main purpose of this paper is to apply the Gaussian scale-space method by determining a suitable σ value in order to smooth rope skipping data. Smoothing technique using a Gaussian kernel with a selection of bandwidth (σ) and time (x) is applied. It is found that the tolerance value of σ can be used to smooth not only one set of data, but also other biomechanical data of different anatomical body landmarks. Penerbit Universiti Kebangsaan Malaysia 2013-07 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/6491/1/jqma-9-1-paper10.pdf Nor Atikah Ab Ghani, and Azmin Sham Rambely, and Samsul Ariffin Abdul Karim, (2013) Smoothing rope skipping data using gaussian scale-space Method. Journal of Quality Measurement and Analysis, 9 (1). pp. 107-117. ISSN 1823-5670 http://www.ukm.my/jqma/
institution Universiti Kebangsaan Malaysia
building Perpustakaan Tun Sri Lanang Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Kebangsaan Malaysia
content_source UKM Journal Article Repository
url_provider http://journalarticle.ukm.my/
language English
description The scale-space method has been widely used in handling image data at multiple scales. Application of Gaussian filtering in different field includes human vision problem, medical data, financial data and electroencephalogram (EEG) signal. The main purpose of this paper is to apply the Gaussian scale-space method by determining a suitable σ value in order to smooth rope skipping data. Smoothing technique using a Gaussian kernel with a selection of bandwidth (σ) and time (x) is applied. It is found that the tolerance value of σ can be used to smooth not only one set of data, but also other biomechanical data of different anatomical body landmarks.
format Article
author Nor Atikah Ab Ghani,
Azmin Sham Rambely,
Samsul Ariffin Abdul Karim,
spellingShingle Nor Atikah Ab Ghani,
Azmin Sham Rambely,
Samsul Ariffin Abdul Karim,
Smoothing rope skipping data using gaussian scale-space Method
author_facet Nor Atikah Ab Ghani,
Azmin Sham Rambely,
Samsul Ariffin Abdul Karim,
author_sort Nor Atikah Ab Ghani,
title Smoothing rope skipping data using gaussian scale-space Method
title_short Smoothing rope skipping data using gaussian scale-space Method
title_full Smoothing rope skipping data using gaussian scale-space Method
title_fullStr Smoothing rope skipping data using gaussian scale-space Method
title_full_unstemmed Smoothing rope skipping data using gaussian scale-space Method
title_sort smoothing rope skipping data using gaussian scale-space method
publisher Penerbit Universiti Kebangsaan Malaysia
publishDate 2013
url http://journalarticle.ukm.my/6491/1/jqma-9-1-paper10.pdf
http://journalarticle.ukm.my/6491/
http://www.ukm.my/jqma/
_version_ 1643736787609190400
score 13.211869