Smoothing rope skipping data using gaussian scale-space Method
The scale-space method has been widely used in handling image data at multiple scales. Application of Gaussian filtering in different field includes human vision problem, medical data, financial data and electroencephalogram (EEG) signal. The main purpose of this paper is to apply the Gaussian scale...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Universiti Kebangsaan Malaysia
2013
|
Online Access: | http://journalarticle.ukm.my/6491/1/jqma-9-1-paper10.pdf http://journalarticle.ukm.my/6491/ http://www.ukm.my/jqma/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-ukm.journal.6491 |
---|---|
record_format |
eprints |
spelling |
my-ukm.journal.64912016-12-14T06:41:20Z http://journalarticle.ukm.my/6491/ Smoothing rope skipping data using gaussian scale-space Method Nor Atikah Ab Ghani, Azmin Sham Rambely, Samsul Ariffin Abdul Karim, The scale-space method has been widely used in handling image data at multiple scales. Application of Gaussian filtering in different field includes human vision problem, medical data, financial data and electroencephalogram (EEG) signal. The main purpose of this paper is to apply the Gaussian scale-space method by determining a suitable σ value in order to smooth rope skipping data. Smoothing technique using a Gaussian kernel with a selection of bandwidth (σ) and time (x) is applied. It is found that the tolerance value of σ can be used to smooth not only one set of data, but also other biomechanical data of different anatomical body landmarks. Penerbit Universiti Kebangsaan Malaysia 2013-07 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/6491/1/jqma-9-1-paper10.pdf Nor Atikah Ab Ghani, and Azmin Sham Rambely, and Samsul Ariffin Abdul Karim, (2013) Smoothing rope skipping data using gaussian scale-space Method. Journal of Quality Measurement and Analysis, 9 (1). pp. 107-117. ISSN 1823-5670 http://www.ukm.my/jqma/ |
institution |
Universiti Kebangsaan Malaysia |
building |
Perpustakaan Tun Sri Lanang Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Kebangsaan Malaysia |
content_source |
UKM Journal Article Repository |
url_provider |
http://journalarticle.ukm.my/ |
language |
English |
description |
The scale-space method has been widely used in handling image data at multiple scales. Application of Gaussian filtering in different field includes human vision problem, medical data, financial data and electroencephalogram (EEG) signal. The main purpose of this paper is to apply the Gaussian scale-space method by determining a suitable σ value in order to smooth rope skipping data. Smoothing technique using a Gaussian kernel with a selection of
bandwidth (σ) and time (x) is applied. It is found that the tolerance value of σ can be used to smooth not only one set of data, but also other biomechanical data of different anatomical body landmarks. |
format |
Article |
author |
Nor Atikah Ab Ghani, Azmin Sham Rambely, Samsul Ariffin Abdul Karim, |
spellingShingle |
Nor Atikah Ab Ghani, Azmin Sham Rambely, Samsul Ariffin Abdul Karim, Smoothing rope skipping data using gaussian scale-space Method |
author_facet |
Nor Atikah Ab Ghani, Azmin Sham Rambely, Samsul Ariffin Abdul Karim, |
author_sort |
Nor Atikah Ab Ghani, |
title |
Smoothing rope skipping data using gaussian scale-space Method |
title_short |
Smoothing rope skipping data using gaussian scale-space Method |
title_full |
Smoothing rope skipping data using gaussian scale-space Method |
title_fullStr |
Smoothing rope skipping data using gaussian scale-space Method |
title_full_unstemmed |
Smoothing rope skipping data using gaussian scale-space Method |
title_sort |
smoothing rope skipping data using gaussian scale-space method |
publisher |
Penerbit Universiti Kebangsaan Malaysia |
publishDate |
2013 |
url |
http://journalarticle.ukm.my/6491/1/jqma-9-1-paper10.pdf http://journalarticle.ukm.my/6491/ http://www.ukm.my/jqma/ |
_version_ |
1643736787609190400 |
score |
13.211869 |