On convergence almost everywhere of multiple fourier integrals

of the polyharmonic operator, which coincides with the multiple Fourier integrals summed over the domains corresponding to the surface levels of the polyharmonic polynomials. It is proved that the partial sums of the multiple Fourier integrals of a function 2 f ∈ L (RN ) converge to zero almost-e...

詳細記述

保存先:
書誌詳細
主要な著者: Anvarjon Ahmedov,, Norashikin Abdul Aziz,, Mohd Noriznan Mohtar,
フォーマット: 論文
言語:English
出版事項: Penerbit Universiti Kebangsaan Malaysia 2011
オンライン・アクセス:http://journalarticle.ukm.my/2895/1/jqma-7-1-10-anvarjon.pdf
http://journalarticle.ukm.my/2895/
http://www.ukm.my/~ppsmfst/jqma
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
id my-ukm.journal.2895
record_format eprints
spelling my-ukm.journal.28952016-12-14T06:32:58Z http://journalarticle.ukm.my/2895/ On convergence almost everywhere of multiple fourier integrals Anvarjon Ahmedov, Norashikin Abdul Aziz, Mohd Noriznan Mohtar, of the polyharmonic operator, which coincides with the multiple Fourier integrals summed over the domains corresponding to the surface levels of the polyharmonic polynomials. It is proved that the partial sums of the multiple Fourier integrals of a function 2 f ∈ L (RN ) converge to zero almost-everywhere on RN \ supp f . Penerbit Universiti Kebangsaan Malaysia 2011-07 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/2895/1/jqma-7-1-10-anvarjon.pdf Anvarjon Ahmedov, and Norashikin Abdul Aziz, and Mohd Noriznan Mohtar, (2011) On convergence almost everywhere of multiple fourier integrals. Journal of Quality Measurement and Analysis, 7 (1). pp. 109-115. ISSN 1823-5670 http://www.ukm.my/~ppsmfst/jqma
institution Universiti Kebangsaan Malaysia
building Perpustakaan Tun Sri Lanang Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Kebangsaan Malaysia
content_source UKM Journal Article Repository
url_provider http://journalarticle.ukm.my/
language English
description of the polyharmonic operator, which coincides with the multiple Fourier integrals summed over the domains corresponding to the surface levels of the polyharmonic polynomials. It is proved that the partial sums of the multiple Fourier integrals of a function 2 f ∈ L (RN ) converge to zero almost-everywhere on RN \ supp f .
format Article
author Anvarjon Ahmedov,
Norashikin Abdul Aziz,
Mohd Noriznan Mohtar,
spellingShingle Anvarjon Ahmedov,
Norashikin Abdul Aziz,
Mohd Noriznan Mohtar,
On convergence almost everywhere of multiple fourier integrals
author_facet Anvarjon Ahmedov,
Norashikin Abdul Aziz,
Mohd Noriznan Mohtar,
author_sort Anvarjon Ahmedov,
title On convergence almost everywhere of multiple fourier integrals
title_short On convergence almost everywhere of multiple fourier integrals
title_full On convergence almost everywhere of multiple fourier integrals
title_fullStr On convergence almost everywhere of multiple fourier integrals
title_full_unstemmed On convergence almost everywhere of multiple fourier integrals
title_sort on convergence almost everywhere of multiple fourier integrals
publisher Penerbit Universiti Kebangsaan Malaysia
publishDate 2011
url http://journalarticle.ukm.my/2895/1/jqma-7-1-10-anvarjon.pdf
http://journalarticle.ukm.my/2895/
http://www.ukm.my/~ppsmfst/jqma
_version_ 1643735535325282304
score 13.251813