Kinematic differences between gradual and impulsive coronal mass ejections: the role of flares
Coronal Mass Ejections (CMEs) are significant solar events that involve intense explosions of magnetic fields and mass particles out from the corona. These events are known to be the main driver of space weather and other disturbances experienced by the Earth. Generally, there are two types of CMEs...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Universiti Kebangsaan Malaysia
2024
|
Online Access: | http://journalarticle.ukm.my/24503/1/SS%2021.pdf http://journalarticle.ukm.my/24503/ https://www.ukm.my/jsm/english_journals/vol53num9_2024/contentsVol53num9_2024.html |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-ukm.journal.24503 |
---|---|
record_format |
eprints |
spelling |
my-ukm.journal.245032024-11-12T07:08:45Z http://journalarticle.ukm.my/24503/ Kinematic differences between gradual and impulsive coronal mass ejections: the role of flares Hamidi, Z.S. Mohamad Ansor, N. Shariff, N.N.M. Coronal Mass Ejections (CMEs) are significant solar events that involve intense explosions of magnetic fields and mass particles out from the corona. These events are known to be the main driver of space weather and other disturbances experienced by the Earth. Generally, there are two types of CMEs – gradual and impulsive, and each type has different properties which is important to be studied on as they have potential to cause breakdowns in our systems. This study is aimed to analyze and differentiate the kinematic behavior of gradual and impulsive CME with the association of weak and strong flares. Data collection is made through SOHO LASCO catalogues and STEREO database which include velocity, acceleration and angular width as well as images. At the end of this study, it can be deduced that impulsive CME (specifically associated with strong flare) is the most prominent event that has greatest angular width and average velocity. The associated flare has contributed more heat energy to speed up the magnetic energy conversion which results to high velocity of plasma discharge. Since fast CME carries huge amount of momentum during the ejection, impulsive CMEs also experience decelerations due to loss of momentum that has been transferred to background solar wind. Penerbit Universiti Kebangsaan Malaysia 2024 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/24503/1/SS%2021.pdf Hamidi, Z.S. and Mohamad Ansor, N. and Shariff, N.N.M. (2024) Kinematic differences between gradual and impulsive coronal mass ejections: the role of flares. Sains Malaysiana, 53 (9). pp. 3173-3181. ISSN 0126-6039 https://www.ukm.my/jsm/english_journals/vol53num9_2024/contentsVol53num9_2024.html |
institution |
Universiti Kebangsaan Malaysia |
building |
Tun Sri Lanang Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Kebangsaan Malaysia |
content_source |
UKM Journal Article Repository |
url_provider |
http://journalarticle.ukm.my/ |
language |
English |
description |
Coronal Mass Ejections (CMEs) are significant solar events that involve intense explosions of magnetic fields and mass particles out from the corona. These events are known to be the main driver of space weather and other disturbances experienced by the Earth. Generally, there are two types of CMEs – gradual and impulsive, and each type has different properties which is important to be studied on as they have potential to cause breakdowns in our systems. This study is aimed to analyze and differentiate the kinematic behavior of gradual and impulsive CME with the association of weak and strong flares. Data collection is made through SOHO LASCO catalogues and STEREO database which include velocity, acceleration and angular width as well as images. At the end of this study, it can be deduced that impulsive CME (specifically associated with strong flare) is the most prominent event that has greatest angular width and average velocity. The associated flare has contributed more heat energy to speed up the magnetic energy conversion which results to high velocity of plasma discharge. Since fast CME carries huge amount of momentum during the ejection, impulsive CMEs also experience decelerations due to loss of momentum that has been transferred to background solar wind. |
format |
Article |
author |
Hamidi, Z.S. Mohamad Ansor, N. Shariff, N.N.M. |
spellingShingle |
Hamidi, Z.S. Mohamad Ansor, N. Shariff, N.N.M. Kinematic differences between gradual and impulsive coronal mass ejections: the role of flares |
author_facet |
Hamidi, Z.S. Mohamad Ansor, N. Shariff, N.N.M. |
author_sort |
Hamidi, Z.S. |
title |
Kinematic differences between gradual and impulsive coronal mass ejections: the role of flares |
title_short |
Kinematic differences between gradual and impulsive coronal mass ejections: the role of flares |
title_full |
Kinematic differences between gradual and impulsive coronal mass ejections: the role of flares |
title_fullStr |
Kinematic differences between gradual and impulsive coronal mass ejections: the role of flares |
title_full_unstemmed |
Kinematic differences between gradual and impulsive coronal mass ejections: the role of flares |
title_sort |
kinematic differences between gradual and impulsive coronal mass ejections: the role of flares |
publisher |
Penerbit Universiti Kebangsaan Malaysia |
publishDate |
2024 |
url |
http://journalarticle.ukm.my/24503/1/SS%2021.pdf http://journalarticle.ukm.my/24503/ https://www.ukm.my/jsm/english_journals/vol53num9_2024/contentsVol53num9_2024.html |
_version_ |
1816131608227348480 |
score |
13.223943 |