The linguistic landscape of “controversial”: sentiment and theme distribution insights

The language used to frame controversial topics on social media has profound implications for public discourse and opinion formation, warranting a close examination of their sentiment and thematic distribution. This study investigates the sentiment and themes associated with controversial topi...

Full description

Saved in:
Bibliographic Details
Main Author: Grishechko, Elizaveta G.
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2024
Online Access:http://journalarticle.ukm.my/23581/1/Gema%20Online_24_1_5.pdf
http://journalarticle.ukm.my/23581/
https://ejournal.ukm.my/gema/issue/view/1648
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-ukm.journal.23581
record_format eprints
spelling my-ukm.journal.235812024-05-24T01:04:01Z http://journalarticle.ukm.my/23581/ The linguistic landscape of “controversial”: sentiment and theme distribution insights Grishechko, Elizaveta G. The language used to frame controversial topics on social media has profound implications for public discourse and opinion formation, warranting a close examination of their sentiment and thematic distribution. This study investigates the sentiment and themes associated with controversial topics by analyzing Reddit posts containing the token “controversial” in their titles on three news-related subreddits, aiming to bridge a gap in existing literature by focusing on platform-specific sentiment analysis with an emphasis on content typology. A mixed-methods NLP approach instrumented via Python was employed, combining VADER-supported sentiment analysis and a qualitative content analysis using n-grams to identify and categorize themes. The sentiment analysis results indicated that most of the content had neutral sentiment, which testifies to the predominantly fact-based approach to presenting information with lack of strong emotional connotations. However, the overall compound sentiment scores were negative, which suggests a strong negative undertone in the framing of controversial topics. The theme distribution analysis revealed that Politics and Legislation was the most predominant theme, followed by Technology and Surveillance, Social Issues and Controversies, Health and Medicine, and Environment and Energy. This distribution attests to a range of societal issues that generate controversy on social media platforms. Study findings can be used by content creators and social media analysts to track online content sentiment, guide content moderation practices, and improve audience engagement. By demonstrating the potential of NLP techniques, this study also contributes to the fields of media research and language technology, which can encourage a better scholarly evaluation of online discourse. Penerbit Universiti Kebangsaan Malaysia 2024-02 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/23581/1/Gema%20Online_24_1_5.pdf Grishechko, Elizaveta G. (2024) The linguistic landscape of “controversial”: sentiment and theme distribution insights. GEMA: Online Journal of Language Studies, 24 (1). pp. 79-97. ISSN 1675-8021 https://ejournal.ukm.my/gema/issue/view/1648
institution Universiti Kebangsaan Malaysia
building Tun Sri Lanang Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Kebangsaan Malaysia
content_source UKM Journal Article Repository
url_provider http://journalarticle.ukm.my/
language English
description The language used to frame controversial topics on social media has profound implications for public discourse and opinion formation, warranting a close examination of their sentiment and thematic distribution. This study investigates the sentiment and themes associated with controversial topics by analyzing Reddit posts containing the token “controversial” in their titles on three news-related subreddits, aiming to bridge a gap in existing literature by focusing on platform-specific sentiment analysis with an emphasis on content typology. A mixed-methods NLP approach instrumented via Python was employed, combining VADER-supported sentiment analysis and a qualitative content analysis using n-grams to identify and categorize themes. The sentiment analysis results indicated that most of the content had neutral sentiment, which testifies to the predominantly fact-based approach to presenting information with lack of strong emotional connotations. However, the overall compound sentiment scores were negative, which suggests a strong negative undertone in the framing of controversial topics. The theme distribution analysis revealed that Politics and Legislation was the most predominant theme, followed by Technology and Surveillance, Social Issues and Controversies, Health and Medicine, and Environment and Energy. This distribution attests to a range of societal issues that generate controversy on social media platforms. Study findings can be used by content creators and social media analysts to track online content sentiment, guide content moderation practices, and improve audience engagement. By demonstrating the potential of NLP techniques, this study also contributes to the fields of media research and language technology, which can encourage a better scholarly evaluation of online discourse.
format Article
author Grishechko, Elizaveta G.
spellingShingle Grishechko, Elizaveta G.
The linguistic landscape of “controversial”: sentiment and theme distribution insights
author_facet Grishechko, Elizaveta G.
author_sort Grishechko, Elizaveta G.
title The linguistic landscape of “controversial”: sentiment and theme distribution insights
title_short The linguistic landscape of “controversial”: sentiment and theme distribution insights
title_full The linguistic landscape of “controversial”: sentiment and theme distribution insights
title_fullStr The linguistic landscape of “controversial”: sentiment and theme distribution insights
title_full_unstemmed The linguistic landscape of “controversial”: sentiment and theme distribution insights
title_sort linguistic landscape of “controversial”: sentiment and theme distribution insights
publisher Penerbit Universiti Kebangsaan Malaysia
publishDate 2024
url http://journalarticle.ukm.my/23581/1/Gema%20Online_24_1_5.pdf
http://journalarticle.ukm.my/23581/
https://ejournal.ukm.my/gema/issue/view/1648
_version_ 1800088771585114112
score 13.211869