Identifying multiple outliers in linear functional relationship model using a robust clustering method
Outliers are some observation points outside the usual pattern of the other observations. It is essential to detect outliers as anomalous observations can affect the inference made in the analysis. In this study, we propose an efficient clustering procedure to identify multiple outliers in the linea...
保存先:
主要な著者: | Adilah Abdul Ghapor,, Yong Zulina Zubairi,, Al Mamun, Sayed Md., Siti Fatimah Hassan,, Elayaraja Aruchunan,, Nurkhairany Amyra Mokhtar, |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Penerbit Universiti Kebangsaan Malaysia
2023
|
オンライン・アクセス: | http://journalarticle.ukm.my/22165/1/SL%2020.pdf http://journalarticle.ukm.my/22165/ http://www.ukm.my/jsm/index.html |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A clustering approach to detect multiple outliers in linear functional relationship model for circular data
著者:: Mokhtar, Nurkhairany Amyra, 等
出版事項: (2018) -
Identifying multiple outliers in linear regression :
Robust fit and clustering approach
著者:: Adnan, Robiah, 等
出版事項: (2001) -
An Outlier Detection Method for Circular Data Using Covratio Statistics
著者:: Mokhtar, Nurkhairany Amyra, 等
出版事項: (2019) -
Identifying multiple outliers in linear regression using robust fit, clustering and inter-outer fences
著者:: Adnan, Robiah
出版事項: (2001) -
Outlier detection in balanced replicated linear functional relationship model
著者:: Arif, Azuraini Mohd, 等
出版事項: (2022)