Analisis in silico peptida berasaskan epitop daripada protein-protein imunogen Burkholderia pseudomallei

Melioidosis is an infectious disease caused by the gram-negative bacterium Burkholderia pseudomallei. This disease is associated with high human mortality rate, especially in tropical and subtropical regions. Rapid diagnosis is crucial in ensuring proper management and treatment of the disease with...

Full description

Saved in:
Bibliographic Details
Main Authors: Yi, Wan Seow, Zhi, Yun Tan, Chieng, Sylvia
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2022
Online Access:http://journalarticle.ukm.my/21717/1/ML%2024.pdf
http://journalarticle.ukm.my/21717/
https://jms.mabjournal.com/index.php/mab/index
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-ukm.journal.21717
record_format eprints
spelling my-ukm.journal.217172023-06-12T08:40:37Z http://journalarticle.ukm.my/21717/ Analisis in silico peptida berasaskan epitop daripada protein-protein imunogen Burkholderia pseudomallei Yi, Wan Seow Zhi, Yun Tan Chieng, Sylvia Melioidosis is an infectious disease caused by the gram-negative bacterium Burkholderia pseudomallei. This disease is associated with high human mortality rate, especially in tropical and subtropical regions. Rapid diagnosis is crucial in ensuring proper management and treatment of the disease with effective antibiotics. Currently, melioidosis diagnosis, bacterial culture is time consuming, difficult, and not sensitive, while IHA is hindered by high antibody background in healthy population and ELISA lacks standardization and is hindered by antigen inconsistency. To improve the current diagnosis method for melioidosis, this research aims to identify, screen, and develop epitope-spanning peptides to be used as standardized B. pseudomallei antigen in serodiagnosis of melioidosis. Peptides are favoured as they are more stable, and they offer effective and rapid antibody detection. Using in silico analysis, a pool of 154 B. pseudomallei proteins previously reported as immunogenic were screened and ranked based on their antigenicity, subcellular localization, stability, adhesive properties, and ability to interact with class I and class II major histocompatibility complex (MHC). The selected candidate from the analysis, BPSS0908 and BPSL2152 were then taken for further analysis to identify linear B-cell epitopes using several sequence-based B-cell epitope prediction tools. Consensus sequences that are confidently predicted by more than two prediction tools and are longer than 15 amino acids were then selected as linear B-cell epitopes. Through ELISA analysis, low sensitivity was demonstrated by the epitope-spanning peptides as compared to B. pseudomallei crude lysate. However, high specificity of 100% was observed for all tested peptides. The low sensitivity demonstrated by the peptides in ELISA could be due to lack of 3-dimensional structure which is needed for a stable antigen-antibody binding. Penerbit Universiti Kebangsaan Malaysia 2022 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/21717/1/ML%2024.pdf Yi, Wan Seow and Zhi, Yun Tan and Chieng, Sylvia (2022) Analisis in silico peptida berasaskan epitop daripada protein-protein imunogen Burkholderia pseudomallei. Malaysian Applied Biology, 51 (5). pp. 237-247. ISSN 0126-8643 https://jms.mabjournal.com/index.php/mab/index
institution Universiti Kebangsaan Malaysia
building Tun Sri Lanang Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Kebangsaan Malaysia
content_source UKM Journal Article Repository
url_provider http://journalarticle.ukm.my/
language English
description Melioidosis is an infectious disease caused by the gram-negative bacterium Burkholderia pseudomallei. This disease is associated with high human mortality rate, especially in tropical and subtropical regions. Rapid diagnosis is crucial in ensuring proper management and treatment of the disease with effective antibiotics. Currently, melioidosis diagnosis, bacterial culture is time consuming, difficult, and not sensitive, while IHA is hindered by high antibody background in healthy population and ELISA lacks standardization and is hindered by antigen inconsistency. To improve the current diagnosis method for melioidosis, this research aims to identify, screen, and develop epitope-spanning peptides to be used as standardized B. pseudomallei antigen in serodiagnosis of melioidosis. Peptides are favoured as they are more stable, and they offer effective and rapid antibody detection. Using in silico analysis, a pool of 154 B. pseudomallei proteins previously reported as immunogenic were screened and ranked based on their antigenicity, subcellular localization, stability, adhesive properties, and ability to interact with class I and class II major histocompatibility complex (MHC). The selected candidate from the analysis, BPSS0908 and BPSL2152 were then taken for further analysis to identify linear B-cell epitopes using several sequence-based B-cell epitope prediction tools. Consensus sequences that are confidently predicted by more than two prediction tools and are longer than 15 amino acids were then selected as linear B-cell epitopes. Through ELISA analysis, low sensitivity was demonstrated by the epitope-spanning peptides as compared to B. pseudomallei crude lysate. However, high specificity of 100% was observed for all tested peptides. The low sensitivity demonstrated by the peptides in ELISA could be due to lack of 3-dimensional structure which is needed for a stable antigen-antibody binding.
format Article
author Yi, Wan Seow
Zhi, Yun Tan
Chieng, Sylvia
spellingShingle Yi, Wan Seow
Zhi, Yun Tan
Chieng, Sylvia
Analisis in silico peptida berasaskan epitop daripada protein-protein imunogen Burkholderia pseudomallei
author_facet Yi, Wan Seow
Zhi, Yun Tan
Chieng, Sylvia
author_sort Yi, Wan Seow
title Analisis in silico peptida berasaskan epitop daripada protein-protein imunogen Burkholderia pseudomallei
title_short Analisis in silico peptida berasaskan epitop daripada protein-protein imunogen Burkholderia pseudomallei
title_full Analisis in silico peptida berasaskan epitop daripada protein-protein imunogen Burkholderia pseudomallei
title_fullStr Analisis in silico peptida berasaskan epitop daripada protein-protein imunogen Burkholderia pseudomallei
title_full_unstemmed Analisis in silico peptida berasaskan epitop daripada protein-protein imunogen Burkholderia pseudomallei
title_sort analisis in silico peptida berasaskan epitop daripada protein-protein imunogen burkholderia pseudomallei
publisher Penerbit Universiti Kebangsaan Malaysia
publishDate 2022
url http://journalarticle.ukm.my/21717/1/ML%2024.pdf
http://journalarticle.ukm.my/21717/
https://jms.mabjournal.com/index.php/mab/index
_version_ 1769843481818169344
score 13.211869