Effect of heat treatment on the structural, morphology and electrochemical performance of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate protective coating for SOFC metallic interconnect

A composite perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate (BSCF-SDCC) coating was investigated to enhance the performance of SUS 430 stainless steel as interconnect material for solid oxide fuel cells (SOFCs). BSCF-SDCC powder was successfully obtained by low-speed wet milling met...

Full description

Saved in:
Bibliographic Details
Main Authors: Tan, Kang Huai, Hamimah Abd.Rahman,, Hariati Mohd Taib,
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2020
Online Access:http://journalarticle.ukm.my/17201/1/11.pdf
http://journalarticle.ukm.my/17201/
https://www.ukm.my/jkukm/volume-324-2020/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my-ukm.journal.17201
record_format eprints
spelling my-ukm.journal.172012021-07-27T02:27:59Z http://journalarticle.ukm.my/17201/ Effect of heat treatment on the structural, morphology and electrochemical performance of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate protective coating for SOFC metallic interconnect Tan, Kang Huai Hamimah Abd.Rahman, Hariati Mohd Taib, A composite perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate (BSCF-SDCC) coating was investigated to enhance the performance of SUS 430 stainless steel as interconnect material for solid oxide fuel cells (SOFCs). BSCF-SDCC powder was successfully obtained by low-speed wet milling method from commercial BSCF, SDC, and binary carbonates. The developed BSCF-SDCC powder were heat-treated 600 °C for 90 min, and then characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) equipped with energy-dispersive spectroscopy (EDS). FESEM revealed better morphology of BSCF-SDCC powder with heat treatment. However, XRD analysis showed the destruction of BSCF phase in the BSCF-SDCC powder after heat treatment at 600 °C. Moreover, electrophoretic deposition (EPD) of BSCF-SDCC powder in an ethanol-added dispersing agent suspension was investigated under 10 volt 10 minutes by 10 g/l. The coated samples were then heat-treated at 600 °C. The coated samples were characterized by comparing between the samples with and without heat treatment based on XRD, SEM-EDS, and area specific resistance (ASR) analyses. XRD analysis indicated BSCF phases disappeared for the samples with heat treatment. The heat-treated sample performed better coating morphology and fewer pores. The samples underwent 500 hours of air oxidation at 600°C, and ASR was measured by DC 2-point method during in situ oxidation process. The coated sample with heat treatment at 600 °C exhibited excellent low area-specific resistance reading of below 0.1 Ωcm2, which is an essential requirement for interconnect materials. After 500 h of oxidation, the XRD patterns revealed stable phase and maintained good coating morphology. Penerbit Universiti Kebangsaan Malaysia 2020 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/17201/1/11.pdf Tan, Kang Huai and Hamimah Abd.Rahman, and Hariati Mohd Taib, (2020) Effect of heat treatment on the structural, morphology and electrochemical performance of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate protective coating for SOFC metallic interconnect. Jurnal Kejuruteraan, 32 (4). pp. 637-644. ISSN 0128-0198 https://www.ukm.my/jkukm/volume-324-2020/
institution Universiti Kebangsaan Malaysia
building Tun Sri Lanang Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Kebangsaan Malaysia
content_source UKM Journal Article Repository
url_provider http://journalarticle.ukm.my/
language English
description A composite perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate (BSCF-SDCC) coating was investigated to enhance the performance of SUS 430 stainless steel as interconnect material for solid oxide fuel cells (SOFCs). BSCF-SDCC powder was successfully obtained by low-speed wet milling method from commercial BSCF, SDC, and binary carbonates. The developed BSCF-SDCC powder were heat-treated 600 °C for 90 min, and then characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) equipped with energy-dispersive spectroscopy (EDS). FESEM revealed better morphology of BSCF-SDCC powder with heat treatment. However, XRD analysis showed the destruction of BSCF phase in the BSCF-SDCC powder after heat treatment at 600 °C. Moreover, electrophoretic deposition (EPD) of BSCF-SDCC powder in an ethanol-added dispersing agent suspension was investigated under 10 volt 10 minutes by 10 g/l. The coated samples were then heat-treated at 600 °C. The coated samples were characterized by comparing between the samples with and without heat treatment based on XRD, SEM-EDS, and area specific resistance (ASR) analyses. XRD analysis indicated BSCF phases disappeared for the samples with heat treatment. The heat-treated sample performed better coating morphology and fewer pores. The samples underwent 500 hours of air oxidation at 600°C, and ASR was measured by DC 2-point method during in situ oxidation process. The coated sample with heat treatment at 600 °C exhibited excellent low area-specific resistance reading of below 0.1 Ωcm2, which is an essential requirement for interconnect materials. After 500 h of oxidation, the XRD patterns revealed stable phase and maintained good coating morphology.
format Article
author Tan, Kang Huai
Hamimah Abd.Rahman,
Hariati Mohd Taib,
spellingShingle Tan, Kang Huai
Hamimah Abd.Rahman,
Hariati Mohd Taib,
Effect of heat treatment on the structural, morphology and electrochemical performance of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate protective coating for SOFC metallic interconnect
author_facet Tan, Kang Huai
Hamimah Abd.Rahman,
Hariati Mohd Taib,
author_sort Tan, Kang Huai
title Effect of heat treatment on the structural, morphology and electrochemical performance of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate protective coating for SOFC metallic interconnect
title_short Effect of heat treatment on the structural, morphology and electrochemical performance of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate protective coating for SOFC metallic interconnect
title_full Effect of heat treatment on the structural, morphology and electrochemical performance of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate protective coating for SOFC metallic interconnect
title_fullStr Effect of heat treatment on the structural, morphology and electrochemical performance of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate protective coating for SOFC metallic interconnect
title_full_unstemmed Effect of heat treatment on the structural, morphology and electrochemical performance of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate protective coating for SOFC metallic interconnect
title_sort effect of heat treatment on the structural, morphology and electrochemical performance of perovskite ba0.5sr0.5co0.8fe0.2o3−δ-sm0.2ce0.8o1.9 carbonate protective coating for sofc metallic interconnect
publisher Penerbit Universiti Kebangsaan Malaysia
publishDate 2020
url http://journalarticle.ukm.my/17201/1/11.pdf
http://journalarticle.ukm.my/17201/
https://www.ukm.my/jkukm/volume-324-2020/
_version_ 1706958278308659200
score 13.211869