Novel random k Satisfiability for k ≤ 2 in hopfield neural network

The k Satisfiability logic representation (kSAT) contains valuable information that can be represented in terms of variables. This paper investigates the use of a particular non-systematic logical rule namely Random k Satisfiability (RANkSAT). RANkSAT contains a series of satisfiable clauses but t...

全面介绍

Saved in:
书目详细资料
Main Authors: Saratha Sathasivam,, Mohd. Asyraf Mansor,, Ahmad Izani Md Ismail,, Siti Zulaikha Mohd Jamaludin,, Mohd Shareduwan Mohd Kasihmuddin,, Mustafa Mamat,
格式: Article
语言:English
出版: Penerbit Universiti Kebangsaan Malaysia 2020
在线阅读:http://journalarticle.ukm.my/16014/1/23.pdf
http://journalarticle.ukm.my/16014/
https://www.ukm.my/jsm/malay_journals/jilid49bil11_2020/KandunganJilid49Bil11_2020.html
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:The k Satisfiability logic representation (kSAT) contains valuable information that can be represented in terms of variables. This paper investigates the use of a particular non-systematic logical rule namely Random k Satisfiability (RANkSAT). RANkSAT contains a series of satisfiable clauses but the structure of the formula is determined randomly by the user. In the present study, RANkSAT representation is successfully implemented in Hopfield Neural Network (HNN) by obtaining the optimal synaptic weights. We focus on the different regimes for k ≤ 2 by taking advantage of the non-redundant logical structure, thus obtaining the final neuron state that minimizes the cost function. We also simulate the performances of RANkSAT logical rule using several performance metrics. The simulated results suggest that the RANkSAT representation can be embedded optimally in HNN and that the proposed method can retrieve the optimal final state.