Fluorescence quenching reaction of chlorophyll a by tris(acetylacetonate)iron(III) in various solvents
Chlorophyll a is known as the prevailing light absorbing pigment giving a strong absorption and fluorescence emission in visible region. Quenching reactions of the chlorophyll a fluorescence by Fe(acac)3 were precisely investigated in various organic solvents which are benzene toluene, ethanol, meth...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Universiti Kebangsaan Malaysia
2017
|
Online Access: | http://journalarticle.ukm.my/11360/1/03%20Nararak.pdf http://journalarticle.ukm.my/11360/ http://www.ukm.my/jsm/english_journals/vol46num9_2017/contentsVol46num9_2017.html |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chlorophyll a is known as the prevailing light absorbing pigment giving a strong absorption and fluorescence emission in visible region. Quenching reactions of the chlorophyll a fluorescence by Fe(acac)3 were precisely investigated in various organic solvents which are benzene toluene, ethanol, methanol, dmf, dmso and acetonitrile. Electron transfer performance of chlorophyll a by Fe(acac)3 was investigated from oxidative quenching reaction. Herein, the simplified Rehm-Weller relationship was used to calculate the free energy change of the photo-induced electron transfer reaction. Emission intensity decreased when the concentration of Fe(acac)3 quencher was increased. Non-linear Stern-Volmer plots are found to be affected by inner filter effect more than the ground state complex formation. Rate of quenching reactions (kq) were determined from the Stern-Volmer equation with corrected inner filter effect. The rates of quenching reactions occurred faster in high viscous solvents. |
---|