Unsteady magnetoconvective flow of bionanofluid with zero mass flux boundary condition
Induced magnetic field stagnation point flow for unsteady two-dimensional laminar forced convection of water based nanofluid containing microorganisms along a vertical plate has been investigated. We have incorporated zero mass flux boundary condition to get physically realistic results. The boundar...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Universiti Kebangsaan Malaysia
2017
|
Online Access: | http://journalarticle.ukm.my/10686/1/18%20F.%20Basir.pdf http://journalarticle.ukm.my/10686/ http://www.ukm.my/jsm/english_journals/vol46num2_2017/contentsVol46num2_2017.html |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my-ukm.journal.10686 |
---|---|
record_format |
eprints |
spelling |
my-ukm.journal.106862017-09-20T09:04:16Z http://journalarticle.ukm.my/10686/ Unsteady magnetoconvective flow of bionanofluid with zero mass flux boundary condition Md. Faisal Md. Basir, Uddin, M.J. A.I. Md. Ismail, Induced magnetic field stagnation point flow for unsteady two-dimensional laminar forced convection of water based nanofluid containing microorganisms along a vertical plate has been investigated. We have incorporated zero mass flux boundary condition to get physically realistic results. The boundary layer equations with three independent variables are transformed into a system of ordinary differential equations by using appropriate similarity transformations. The derived equations are then solved numerically by using Maple which use the fourth-fifth order Runge-Kutta-Fehlberg algorithm to solve the system of similarity differential equations. The effects of the governing parameters on the dimensionless velocity, induced magnetic field, temperature, nanoparticle volume fraction, density of motile microorganisms, skin friction coefficient, local Nusselt number and motile density of microorganisms transfer rate are illustrated graphically and tabular form. It is found that the controlling parameters strongly affect the fluid flow and heat transfer characteristics. We compare our numerical results with published results for some limiting cases and found excellent agreement. Penerbit Universiti Kebangsaan Malaysia 2017-02 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/10686/1/18%20F.%20Basir.pdf Md. Faisal Md. Basir, and Uddin, M.J. and A.I. Md. Ismail, (2017) Unsteady magnetoconvective flow of bionanofluid with zero mass flux boundary condition. Sains Malaysiana, 46 (2). pp. 327-333. ISSN 0126-6039 http://www.ukm.my/jsm/english_journals/vol46num2_2017/contentsVol46num2_2017.html |
institution |
Universiti Kebangsaan Malaysia |
building |
Perpustakaan Tun Sri Lanang Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Kebangsaan Malaysia |
content_source |
UKM Journal Article Repository |
url_provider |
http://journalarticle.ukm.my/ |
language |
English |
description |
Induced magnetic field stagnation point flow for unsteady two-dimensional laminar forced convection of water based nanofluid containing microorganisms along a vertical plate has been investigated. We have incorporated zero mass flux boundary condition to get physically realistic results. The boundary layer equations with three independent variables are transformed into a system of ordinary differential equations by using appropriate similarity transformations. The derived equations are then solved numerically by using Maple which use the fourth-fifth order Runge-Kutta-Fehlberg algorithm to solve the system of similarity differential equations. The effects of the governing parameters on the dimensionless velocity, induced magnetic field, temperature, nanoparticle volume fraction, density of motile microorganisms, skin friction coefficient, local Nusselt number and motile density of microorganisms transfer rate are illustrated graphically and tabular form. It is found that the controlling parameters strongly affect the fluid flow and heat transfer characteristics. We compare our numerical results with published results for some limiting cases and found excellent agreement. |
format |
Article |
author |
Md. Faisal Md. Basir, Uddin, M.J. A.I. Md. Ismail, |
spellingShingle |
Md. Faisal Md. Basir, Uddin, M.J. A.I. Md. Ismail, Unsteady magnetoconvective flow of bionanofluid with zero mass flux boundary condition |
author_facet |
Md. Faisal Md. Basir, Uddin, M.J. A.I. Md. Ismail, |
author_sort |
Md. Faisal Md. Basir, |
title |
Unsteady magnetoconvective flow of bionanofluid
with zero mass flux boundary condition |
title_short |
Unsteady magnetoconvective flow of bionanofluid
with zero mass flux boundary condition |
title_full |
Unsteady magnetoconvective flow of bionanofluid
with zero mass flux boundary condition |
title_fullStr |
Unsteady magnetoconvective flow of bionanofluid
with zero mass flux boundary condition |
title_full_unstemmed |
Unsteady magnetoconvective flow of bionanofluid
with zero mass flux boundary condition |
title_sort |
unsteady magnetoconvective flow of bionanofluid
with zero mass flux boundary condition |
publisher |
Penerbit Universiti Kebangsaan Malaysia |
publishDate |
2017 |
url |
http://journalarticle.ukm.my/10686/1/18%20F.%20Basir.pdf http://journalarticle.ukm.my/10686/ http://www.ukm.my/jsm/english_journals/vol46num2_2017/contentsVol46num2_2017.html |
_version_ |
1643738218646994944 |
score |
13.223943 |