L-Arginine Grafted Chitosan as Corrosion Inhibitor for Mild Steel Protection

Corrosion prevention has been a global phenomenon, particularly in metallic and construction engineering. Most inhibitors are expensive and toxic. Therefore, developing nontoxic and cheap corrosion inhibitors has been a way forward. In this work, L-arginine was successfully grafted on chitosan by th...

全面介紹

Saved in:
書目詳細資料
Main Authors: Dalhatu, S.N., Modu, K.A., Mahmoud, A.A., Zango, Z.U., Umar, A.B., Usman, F., Dennis, J.O., Alsadig, A., Ibnaouf, K.H., Aldaghri, O.A.
格式: Article
出版: 2023
在線閱讀:http://scholars.utp.edu.my/id/eprint/34346/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85146671073&doi=10.3390%2fpolym15020398&partnerID=40&md5=616ee14a09be372db8a53f3fc023bd13
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Corrosion prevention has been a global phenomenon, particularly in metallic and construction engineering. Most inhibitors are expensive and toxic. Therefore, developing nontoxic and cheap corrosion inhibitors has been a way forward. In this work, L-arginine was successfully grafted on chitosan by the thermal technique using a reflux condenser. This copolymer was characterized by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The corrosion inhibition performance of the composite polymer was tested on mild steel in 0.5M HCl by electrochemical methods. The potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) results were consistent. The inhibition efficiency at optimum concentration rose to 91.4. The quantum chemical calculation parameters show good properties of the material as a corrosion inhibitor. The molecular structure of the inhibitor was subjected to density functional theory (DFT) to understand its theoretical properties, and the results confirmed the inhibition efficiency of the grafted polymer for corrosion prevention. © 2023 by the authors.