Improving F-Score of the imbalance visualized pattern dataset for yield prediction robustness

In a non closed loop manufacturing process, a prediction model of the yield outcome can be achieved by visualizing the temporal historical data pattern generated from the inspection machine, discretize to visualized data patterns, and map them into machine learning algorithm.Our previous study shows...

詳細記述

保存先:
書誌詳細
主要な著者: Megat Mohamed Noor, Megat Norulazmi, Jusoh, Shaidah
フォーマット: Conference or Workshop Item
言語:English
出版事項: 2008
主題:
オンライン・アクセス:http://repo.uum.edu.my/2854/1/Megat_Norulazmi_Megat_Mohamed_Noor.pdf
http://repo.uum.edu.my/2854/
http://www.codata.org/08conf/index.html
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:In a non closed loop manufacturing process, a prediction model of the yield outcome can be achieved by visualizing the temporal historical data pattern generated from the inspection machine, discretize to visualized data patterns, and map them into machine learning algorithm.Our previous study shows that combination of under-sampling and over sampling techniques unabel wider range of data sets where SMOTE+VDM and random under-sampling produced robust classifier performance of handling better with different batches of prediction test data.In this paper, the integration of K* entropy base similarity distance function with SMOTE, CNN+Tomek Links and the introduction of SMOTE and SMaRT (Synthetic Majority Replacement Technique)combination, has improved the classifiers F-Score robustness.