Improving F-Score of the imbalance visualized pattern dataset for yield prediction robustness

In a non closed loop manufacturing process, a prediction model of the yield outcome can be achieved by visualizing the temporal historical data pattern generated from the inspection machine, discretize to visualized data patterns, and map them into machine learning algorithm.Our previous study shows...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Megat Mohamed Noor, Megat Norulazmi, Jusoh, Shaidah
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2008
الموضوعات:
الوصول للمادة أونلاين:http://repo.uum.edu.my/2854/1/Megat_Norulazmi_Megat_Mohamed_Noor.pdf
http://repo.uum.edu.my/2854/
http://www.codata.org/08conf/index.html
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In a non closed loop manufacturing process, a prediction model of the yield outcome can be achieved by visualizing the temporal historical data pattern generated from the inspection machine, discretize to visualized data patterns, and map them into machine learning algorithm.Our previous study shows that combination of under-sampling and over sampling techniques unabel wider range of data sets where SMOTE+VDM and random under-sampling produced robust classifier performance of handling better with different batches of prediction test data.In this paper, the integration of K* entropy base similarity distance function with SMOTE, CNN+Tomek Links and the introduction of SMOTE and SMaRT (Synthetic Majority Replacement Technique)combination, has improved the classifiers F-Score robustness.