Fuzzy discretization techique for bayesian flood disaster model

The use of Bayesian Networks in the domain of disaster management has proven its efficiency in developing the disaster model and has been widely used to represent the logical relationships between variables.Prior to modelling the correlation between the flood factors, it was necessary to discretize...

詳細記述

保存先:
書誌詳細
主要な著者: Ahmad Azami, Nor Idayu, Yusoff, Nooraini, Ku-Mahamud, Ku Ruhana
フォーマット: 論文
言語:English
出版事項: Universiti Utara Malaysia Press 2018
主題:
オンライン・アクセス:http://repo.uum.edu.my/24019/1/JICT%2018%202%202018%20167%E2%80%93189.pdf
http://repo.uum.edu.my/24019/
http://jict.uum.edu.my/index.php/current-issues#A1
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:The use of Bayesian Networks in the domain of disaster management has proven its efficiency in developing the disaster model and has been widely used to represent the logical relationships between variables.Prior to modelling the correlation between the flood factors, it was necessary to discretize the continuous data due to the weakness of the Bayesian Network to handle such variables.Therefore, this paper aimed to propose a data discretization technique and compare the existing discretization techniques to produce a spatial correlation model.In particular, the main contribution of this paper was to propose a fuzzy discretization method for the Bayesian-based flood model. The performance of the model is based on precision, recall, F-measure, and the receiver operating characteristic area.The experimental results demonstrated that the fuzzy discretization method provided the best measurements for the correlation model. Consequently, the proposed fuzzy discretization technique facilitated the data input for the flood model and was able to help the researchers in developing effective early warning systems in the future. In addition, the results of correlation were prominent in disaster management to provide reference that may help the government, planners, and decision-makers to perform actions and mitigate flood events.