Robust linear discriminant models to solve financial crisis in banking sectors
Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories.However, the performance of classical estimators in LDA highly depends on the assumptions of normality...
保存先:
主要な著者: | Lim, Yai-Fung, Syed Yahaya, Sharipah Soaad, Idris, Faoziah, Ali, Hazlina, Omar, Zurni |
---|---|
フォーマット: | Conference or Workshop Item |
出版事項: |
2014
|
主題: | |
オンライン・アクセス: | http://repo.uum.edu.my/16532/ http://doi.org/10.1063/1.4903673 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Robust linear discriminant analysis with automatic trimmed mean
著者:: Syed Yahaya, Sharipah Soaad, 等
出版事項: (2016) -
Robust Linear Discriminant Analysis with Highest Breakdown Point Estimator
著者:: Yai, Fung Lim, 等
出版事項: (2018) -
Winsorization on linear discriminant analysis
著者:: Lim, Yai-Fung, 等
出版事項: (2016) -
Robust linear discriminant rules with coordinatewise and distance based approaches
著者:: Lim, Yai Fung
出版事項: (2020) -
Robust hotelling control chart with consistent minimum vector variance
著者:: Ali, Hazlina, 等
出版事項: (2013)