Logic-based probabilistic network model to detect and track faults in a process system
Process systems are becoming complex due to a higher dependency among operational variables and complex control loops. Principal component analysis (PCA) is widely used to reduce the dimensionality of the complex process systems, while Bayesian networks (BNs) are increasingly employed to model relat...
保存先:
主要な著者: | Tahoon, A.I., Rusli, R., Khan, F., Zainal Abidin, M. |
---|---|
フォーマット: | 論文 |
出版事項: |
John Wiley and Sons Inc.
2020
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075526483&doi=10.1002%2fprs.12110&partnerID=40&md5=93f53c296ce3bee15f2db7ba59c0433e http://eprints.utp.edu.my/23175/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Detection of High Impedance Fault Using a Probabilistic Neural-Network Classifier
著者:: Sulaiman, Marizan, 等
出版事項: (2013) -
Engine fault diagnosis using probabilistic neural network
著者:: Sheng, Zhu, 等
出版事項: (2021) -
FAULT INFERENCE USINGENHANCEDBAYESIAN NETWORKSFOR ABNORMAL SITUATION MANAGEMENT
著者:: TAHOON, AMR IBRAHIM
出版事項: (2020) -
Enhanced probabilistic neural network with data imputation capabilities for machine-fault slassification
著者:: Chang, R.K.Y., 等
出版事項: (2009) -
Automata for modeling reversible probabilistic processes
著者:: Arpit,, 等
出版事項: (2013)