Parallel based support vector regression for empirical modeling of nonlinear chemical process systems
In this paper, a support vector regression (SVR) using radial basis function (RBF) kernel is proposed using an integrated parallel linear-and-nonlinear model framework for empirical modeling of nonlinear chemical process systems. Utilizing linear orthonormal basis filters (OBF) model to represent th...
Saved in:
Main Authors: | Zabiri, H., Marappagounder, R., Ramli, N.M. |
---|---|
格式: | Article |
出版: |
Penerbit Universiti Kebangsaan Malaysia
2018
|
在線閱讀: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045654380&doi=10.17576%2fjsm-2018-4703-25&partnerID=40&md5=ab0ea71399a142639b56a8c597e3f7a6 http://eprints.utp.edu.my/20647/ |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Parallel based support vector regression for empirical modeling of nonlinear chemical process systems
由: Zabiri, H., et al.
出版: (2018) -
Parallel based support vector regression for empirical modeling of nonlinear chemical process systems
由: Haslinda Zabiri,, et al.
出版: (2018) -
Parallel based support vector regression for empirical modeling of nonlinear chemical process systems
由: Zabiri, Haslinda, et al.
出版: (2018) -
A Study on the Closed-Loop Performance in Extrapolated Regions of Operations of Nonlinear Systems Using Parallel OBF-NN Models
由: Zabiri, Haslinda, et al.
出版: (2018) -
Identification of Nonlinear Systems Using Parallel Laguerre-NN Model
������
����
由: H., Zabiri, et al.
出版: (2013)