Parallel based support vector regression for empirical modeling of nonlinear chemical process systems
In this paper, a support vector regression (SVR) using radial basis function (RBF) kernel is proposed using an integrated parallel linear-and-nonlinear model framework for empirical modeling of nonlinear chemical process systems. Utilizing linear orthonormal basis filters (OBF) model to represent th...
保存先:
主要な著者: | Zabiri, H., Marappagounder, R., Ramli, N.M. |
---|---|
フォーマット: | 論文 |
出版事項: |
Penerbit Universiti Kebangsaan Malaysia
2018
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045654380&doi=10.17576%2fjsm-2018-4703-25&partnerID=40&md5=ab0ea71399a142639b56a8c597e3f7a6 http://eprints.utp.edu.my/20647/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Parallel based support vector regression for empirical modeling of nonlinear chemical process systems
著者:: Zabiri, H., 等
出版事項: (2018) -
Parallel based support vector regression for empirical modeling of nonlinear chemical process systems
著者:: Haslinda Zabiri,, 等
出版事項: (2018) -
Parallel based support vector regression for empirical modeling of nonlinear chemical process systems
著者:: Zabiri, Haslinda, 等
出版事項: (2018) -
A Study on the Closed-Loop Performance in Extrapolated Regions of Operations of Nonlinear Systems Using Parallel OBF-NN Models
著者:: Zabiri, Haslinda, 等
出版事項: (2018) -
Identification of Nonlinear Systems Using Parallel Laguerre-NN Model
������
����
著者:: H., Zabiri, 等
出版事項: (2013)