Hybridization of Ensemble Kalman Filter and Non-linear Auto-regressive Neural Network for Financial Forecasting
Financial data is characterized as non-linear, chaotic in nature and volatile thus making the process of forecasting cumbersome. Therefore, a successful forecasting model must be able to capture longterm dependencies from the past chaotic data. In this study, a novel hybrid model, called UKF-NAR...
保存先:
第一著者: | Lai, Fong Woon |
---|---|
その他の著者: | Rajendra , Prasath |
フォーマット: | Book Section |
出版事項: |
Springer
2014
|
オンライン・アクセス: | http://eprints.utp.edu.my/11587/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Hybridization of Ensemble Kalman Filter and Non-linear Auto-regressive Neural Network for Financial Forecasting
著者:: Said , Jadid Abdulkadir, 等
出版事項: (2014) -
Hybridization of Ensemble Kalman Filter and Non-linear Auto-regressive Neural Network for Financial Forecasting
著者:: Said, Jadid Abdulkadir, 等
出版事項: (2014) -
Hybridization on Ensemble Kalman Filter and Non-Linear Auto-Regressive Neural Network for Financial Forecasting
著者:: Abdulkadir, Said Jadid, 等
出版事項: (2014) -
Hybridization of ensemble kalman filter and non-linear auto-regressive neural network for financial forecasting
著者:: Abdulkadir, S.J., 等
出版事項: (2014) -
Multidimensional deformation analysis with linear and non-linear Kalman filter
著者:: Aharizad, Nezhla
出版事項: (2011)