Hybridization of Ensemble Kalman Filter and Non-linear Auto-regressive Neural Network for Financial Forecasting
Financial data is characterized as non-linear, chaotic in nature and volatile thus making the process of forecasting cumbersome. Therefore, a successful forecasting model must be able to capture longterm dependencies from the past chaotic data. In this study, a novel hybrid model, called UKF-NAR...
محفوظ في:
المؤلف الرئيسي: | Lai, Fong Woon |
---|---|
مؤلفون آخرون: | Rajendra , Prasath |
التنسيق: | Book Section |
منشور في: |
Springer
2014
|
الوصول للمادة أونلاين: | http://eprints.utp.edu.my/11587/ |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Hybridization of Ensemble Kalman Filter and Non-linear Auto-regressive Neural Network for Financial Forecasting
بواسطة: Said , Jadid Abdulkadir, وآخرون
منشور في: (2014) -
Hybridization of Ensemble Kalman Filter and Non-linear Auto-regressive Neural Network for Financial Forecasting
بواسطة: Said, Jadid Abdulkadir, وآخرون
منشور في: (2014) -
Hybridization on Ensemble Kalman Filter and Non-Linear Auto-Regressive Neural Network for Financial Forecasting
بواسطة: Abdulkadir, Said Jadid, وآخرون
منشور في: (2014) -
Hybridization of ensemble kalman filter and non-linear auto-regressive neural network for financial forecasting
بواسطة: Abdulkadir, S.J., وآخرون
منشور في: (2014) -
Multidimensional deformation analysis with linear and non-linear Kalman filter
بواسطة: Aharizad, Nezhla
منشور في: (2011)