Improving the diagnosis of breast cancer using regularized logistic regression with adaptive elastic net
Early diagnosis of breast cancer helps improve the patient's chance of survival. Therefore, cancer classification and feature selection are important research topics in medicine and biology. Recently, the adaptive elastic net was used effectively for feature-based cancer classification, allowin...
محفوظ في:
المؤلفون الرئيسيون: | Alharthi, Aiedh Mrisi, Lee, Muhammad Hisyam, Algama, Zakariya Yahya |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Horizon Research Publishing
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/95725/1/AiedhMrisi2021_ImprovingtheDiagnosisofBreastCancer.pdf http://eprints.utm.my/id/eprint/95725/ http://dx.doi.org/10.13189/ujph.2021.090514 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Embedded feature selection methods with high dimensionality for elastic net and logistic regression models
بواسطة: Alharthi, Aiedh Mrisi
منشور في: (2022) -
Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification
بواسطة: Algamal, Zakariya Y., وآخرون
منشور في: (2015) -
Gene selection and classification of microarray gene expression data based on a new adaptive L1-norm elastic net penalty
بواسطة: Alharthi, Aiedh Mrisi, وآخرون
منشور في: (2021) -
Improving penalized logistic regression model with missing values in high-dimensional data
بواسطة: Alharthi, Aiedh Mrisi, وآخرون
منشور في: (2022) -
Weighted L1-norm logistic regression for gene selection of microarray gene expression classification
بواسطة: Alharthi, Aiedh Mrisi, وآخرون
منشور في: (2020)