Bearing fault diagnosis using deep sparse autoencoder
Rolling element bearing is an important component in various machinery. Faulty on bearing cause severe equipment damage that lead to high maintenance cost. The development of deep learning has been paid a considerable amount of attention to fault diagnosis on rolling element bearing. Traditional mac...
保存先:
主要な著者: | Saufi, S. R., Ahmad, Z. A. B., Leong, M. S., Hee, L. M. |
---|---|
フォーマット: | Conference or Workshop Item |
言語: | English |
出版事項: |
2021
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/94188/1/SRSaufi2021_BearingFaultDiagnosisUsingDeepSparseAutoencoder.pdf http://eprints.utm.my/id/eprint/94188/ http://dx.doi.org/10.1088/1757-899X/1062/1/012002 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Differential evolution optimization for resilient stacked sparse autoencoder and its applications on bearing fault diagnosis
著者:: Saufi, Syahril Ramadhan, 等
出版事項: (2018) -
Machinery fault diagnosis based on a modified hybrid deep sparse autoencoder using a raw vibration time-series signal.
著者:: Saufi, Syahril Ramadhan, 等
出版事項: (2023) -
Detection of covid-19 from chest x-ray and ct scan images using improved stacked sparse autoencoder
著者:: Saufi, S. R., 等
出版事項: (2021) -
Comparative analysis of optimization algorithm on DSAE model for bearing fault diagnosis
著者:: Saufi, Syahril Ramadhan, 等
出版事項: (2021) -
Gearbox fault diagnosis using a deep learningmodel with limited data sample
著者:: Saufi, Syahril Ramadhan, 等
出版事項: (2020)