A hybrid model for class noise detection using k-means and classification filtering algorithms
Real data may have a considerable amount of noise produced by error in data collection, transmission and storage. The noisy training data set increases the training time and complexity of the induced machine learning model, which led to reduce the overall performance. Identifying noisy instances and...
Saved in:
Main Authors: | Nematzadeh, Zahra, Ibrahim, Roliana, Selamat, Ali |
---|---|
格式: | Article |
語言: | English |
出版: |
Springer, Cham
2020
|
在線閱讀: | http://eprints.utm.my/id/eprint/93683/1/AliSelamat2020_AHybridModelForClassNoiseDetection.pdf http://eprints.utm.my/id/eprint/93683/ http://dx.doi.org/10.1007/s42452-020-3129-x |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Class noise detection using classification filtering algorithms
由: Nematzadehbalagatabi, Zahra, et al.
出版: (2017) -
The synergistic combination of fuzzy C-means and ensemble filtering for class noise detection
由: Nematzadeh, Zahra, et al.
出版: (2020) -
Improving class noise detection and classification performance: a new two-filter CNDC model
由: Nematzadeh, Zahra, et al.
出版: (2020) -
A method for class noise detection based on K-means and SVM algorithms
由: Nematzadeh, Z., et al.
出版: (2015) -
The hybrid feature selection k-means method for Arabic webpage classification
由: Alghamdi, Hanan, et al.
出版: (2014)