Pre-processing streamflow data through singular spectrum analysis with fuzzy C-means clustering
One approach to improve water resource management is by making use of streamflow forecasts. In this study, eigenvector pairs were clustered by employing fuzzy c-means (FCM) during the grouping stage as an enhancement to the singular spectrum analysis (SSA) technique for data pre-processing. The FCM-...
محفوظ في:
المؤلفون الرئيسيون: | Nasir, Najah, Samsudin, Ruhaidah, Shabri, Ani |
---|---|
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/92154/1/NajahNasir2020_PreprocessingStreamflowDatathroughSingularSpectrum.pdf http://eprints.utm.my/id/eprint/92154/ http://dx.doi.org/10.1088/1757-899X/864/1/012085 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Forecasting drought using modified empirical wavelet transform-ARIMA with fuzzy C-means clustering
بواسطة: Shaari, Muhammad Akram, وآخرون
منشور في: (2018) -
Streamflow estimation at ungauged site using wavelet group method of data handling in Peninsular Malaysia
بواسطة: Badyalina, Basri, وآخرون
منشور في: (2014) -
A Comparative Study Of Fuzzy C-Means And K-Means Clustering Techniques
بواسطة: Sharifah Sakinah, Syed Ahmad
منشور في: (2014) -
Modeling of vehicle trajectory using K-means and fuzzy C-means clustering
بواسطة: Choong, Mei Yeen, وآخرون
منشور في: (2019) -
Comparison of singular spectrum analysis and autoregressive integrated moving-average model on forecasting tourist arrival to langkawi
بواسطة: Shabri, Ani, وآخرون
منشور في: (2018)