Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree
In this study, we introduced novel hybrid of evidence believe function (EBF) with logistic regression (EBF-LR) and logistic model tree (EBF-LMT) for landslide susceptibility modelling. Fourteen conditioning factors were selected, including slope aspect, elevation, slope angle, profile curvature, pla...
保存先:
主要な著者: | Chen, Wei, Zhao, Xia, Shahabi, Himan, Shirzadi, Ataollah, Khosravi, Khabat, Chai, Huichan, Zhang, Shuai, Zhang, Lingyu, Ma, Jianquan, Chen, Yingtao, Wang, Xiaojing, Ahmad, Baharin, Li, Renwei |
---|---|
フォーマット: | 論文 |
出版事項: |
Taylor and Francis Ltd.
2019
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/88728/ http://dx.doi.org/10.1080/10106049.2019.1588393 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Uncertainties of prediction accuracy in shallow landslide modeling: sample size and raster resolution
著者:: Shirzadi, Ataollah, 等
出版事項: (2019) -
Shallow landslide prediction using a novel hybrid functional machine learning algorithm
著者:: Dieu, Tien Bui, 等
出版事項: (2019) -
Safety measures in construction logistics
著者:: Ratin, Nurul Fatimah
出版事項: (2019) -
The consumers’ convenience dimensions in performing food online purchase and its logistics level of service
著者:: Damerin, Noor Haslyana
出版事項: (2019) -
The consumers' convenience dimensions in performing food online purchase and its logistics level of service
著者:: Damerin, Noor Haslyana
出版事項: (2019)