Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree
In this study, we introduced novel hybrid of evidence believe function (EBF) with logistic regression (EBF-LR) and logistic model tree (EBF-LMT) for landslide susceptibility modelling. Fourteen conditioning factors were selected, including slope aspect, elevation, slope angle, profile curvature, pla...
محفوظ في:
المؤلفون الرئيسيون: | Chen, Wei, Zhao, Xia, Shahabi, Himan, Shirzadi, Ataollah, Khosravi, Khabat, Chai, Huichan, Zhang, Shuai, Zhang, Lingyu, Ma, Jianquan, Chen, Yingtao, Wang, Xiaojing, Ahmad, Baharin, Li, Renwei |
---|---|
التنسيق: | مقال |
منشور في: |
Taylor and Francis Ltd.
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/88728/ http://dx.doi.org/10.1080/10106049.2019.1588393 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Uncertainties of prediction accuracy in shallow landslide modeling: sample size and raster resolution
بواسطة: Shirzadi, Ataollah, وآخرون
منشور في: (2019) -
Shallow landslide prediction using a novel hybrid functional machine learning algorithm
بواسطة: Dieu, Tien Bui, وآخرون
منشور في: (2019) -
Safety measures in construction logistics
بواسطة: Ratin, Nurul Fatimah
منشور في: (2019) -
The consumers’ convenience dimensions in performing food online purchase and its logistics level of service
بواسطة: Damerin, Noor Haslyana
منشور في: (2019) -
The consumers' convenience dimensions in performing food online purchase and its logistics level of service
بواسطة: Damerin, Noor Haslyana
منشور في: (2019)