Prediction of bearing capacity of thin-walled foundation: a simulation approach
In the recent past years, utilization of intelligent models for solving geotechnical problems has received considerable attention. This paper highlights the feasibility of adaptive neuro-fuzzy inference system (ANFIS) for predicting the bearing capacity of thin-walled foundations. For this reason, a...
保存先:
主要な著者: | Momeni, Ehsan, Armaghani, Danial Jahed, Fatemi, Seyed Alireza, Nazir, Ramli |
---|---|
フォーマット: | 論文 |
出版事項: |
Springer London
2018
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/85655/ http://dx.doi.org/10.1007/s00366-017-0542-x |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Bearing capacity of precast thin-walled foundation in sand
著者:: Momeni, Ehsan, 等
出版事項: (2015) -
Prediction of bearing capacity for thin-wall spread foundations using ICA-ANN predictive model
著者:: Nazir, Ramli, 等
出版事項: (2015) -
Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN
著者:: Momeni, Ehsan, 等
出版事項: (2014) -
Bearing capacity of shallow foundation's prediction through hybrid artificial neural networks
著者:: Marto, Aminaton, 等
出版事項: (2014) -
Comparative study on prediction of axial bearing capacity of driven piles in granular materials
著者:: Momeni, Ehsan, 等
出版事項: (2013)