Identification of source to sink relationship in deregulated power systems using artificial neural network
This paper suggests a method to identify the relationship of real power transfer between source and sink using artificial neural network (ANN). The basic idea is to use supervised learning paradigm to train the ANN. For that a conventional power flow tracing method is used as a teacher. Based on sol...
محفوظ في:
المؤلفون الرئيسيون: | Mustafa, Mohd. Wazir, Khairuddin, Azhar, Shareef, Hussain, Khalid, S. N. |
---|---|
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2007
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/7665/1/Mohd_Wazir_Mustafa_2007_Identification_of_Source_to_Sink_Relationship.pdf http://eprints.utm.my/id/eprint/7665/ http://ieeexplore.ieee.org/document/4509992/ |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Preference comparison of AI power tracing techniques for deregulated power markets
بواسطة: Abd. Khalid, Saifulnizam, وآخرون
منشور في: (2012) -
A hybrid power transfer allocation approach for deregulated power systems
بواسطة: Shareef, Hussain, وآخرون
منشور في: (2006) -
A comparison of electrical power tracing methods used in deregulated power systems
بواسطة: Mustafa, Mohd. Wazir, وآخرون
منشور في: (2008) -
Evaluation of real power and loss contributions for deregulated environment
بواسطة: Abd. Khalid, Saifulnizam, وآخرون
منشور في: (2012) -
Reactive power transfer allocation method with the application of artificial neural network
بواسطة: Mustafa, Mohd Wazir, وآخرون
منشور في: (2008)