An intelligent system based on kernel methods for crop yield prediction
This paper presents work on developing a software system for predicting crop yield from climate and plantation data. At the core of this system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal wit...
محفوظ في:
المؤلفون الرئيسيون: | , |
---|---|
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2006
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/7573/1/Sap_M_N_Md_2006_Intelligent_System_Based_Kernel_Methods.pdf http://eprints.utm.my/id/eprint/7573/ http://dx.doi.org/10.1007/11731139_98 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | This paper presents work on developing a software system for predicting crop yield from climate and plantation data. At the core of this system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. For this purpose, a robust weighted kernel k-means algorithm incorporating spatial constraints is presented. The algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield. |
---|