A new tribological approach on metal cup with optimized pits model using spark discharge machine

An interference friction causes tear and wear in metal-on-metal (MoM) hip joint. The purpose of this research is to examine the optimization of pit embedded in the acetabular cup using a spark discharge machine. Tribology tests on cup with 8, 21, and 40 pits embedded produced promising results. A mo...

全面介绍

Saved in:
书目详细资料
Main Authors: Razak, D. M., Syahrullail, S., Sapawe, N., Azli, Y., Nuraliza, N.
格式: Article
出版: Taylor and Francis Inc. 2016
主题:
在线阅读:http://eprints.utm.my/id/eprint/73733/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84946867099&doi=10.1080%2f02726351.2015.1064503&partnerID=40&md5=b7e932e3497bc0a3dc7d343e46f04449
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:An interference friction causes tear and wear in metal-on-metal (MoM) hip joint. The purpose of this research is to examine the optimization of pit embedded in the acetabular cup using a spark discharge machine. Tribology tests on cup with 8, 21, and 40 pits embedded produced promising results. A modified pin-on-disk tribometer was used to measure the effects of the coefficient of friction and wear on a 28-mm-diameter acetabular cup. Microscopy image analysis was used to examine particle debris and surface disfigurement. This study revealed that the more pits were produced in the hemispherical or curvature cup, the more lubricant was confined inside the pits, and the easier the contact was for MoM. The results also show that the curvature surface modification with pits can positively influence friction and wear and stability optimization of MoM implants.