A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network
Automatic classification of Power Quality Disturbances (PQDs) is a challenging concern for both the utility and industry. In this paper, a novel technique of automatic classification of single and hybrid PQDs is proposed. The proposed algorithm consists of the Discrete Wavelet Transform (DWT) and Pr...
保存先:
主要な著者: | Khokhar, Suhail, Mohd. Zin, Abdullah Asuhaimi, Momen, Aslam Pervez, Mokhtar, Ahmad Safawi |
---|---|
フォーマット: | 論文 |
出版事項: |
Elsevier
2017
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/66455/ http://dx.doi.org/10.1016/j.measurement.2016.10.013 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Automatic classification of single and hybrid power quality disturbances using Wavelet Transform and Modular Probabilistic Neural Network
著者:: Khokhar, S., 等
出版事項: (2016) -
Automatic classification of power quality disturbances using optimal feature selection based algorithm
著者:: Khokhar, Suhail
出版事項: (2016) -
Automatic pattern recognition of single and multiple power quality disturbances
著者:: Khokhar, Suhail, 等
出版事項: (2016) -
MATLAB / SIMULINK based and simulation of power quality disturbances
著者:: Khokhar, Suhail, 等
出版事項: (2014) -
Automated recognition of single & hybrid power quality disturbances using wavelet transform based support vector machine
著者:: Khokhar, S., 等
出版事項: (2017)