A wavelet-based technique for damage quantification via mode shape decomposition
In this study, a neuro-wavelet technique was proposed for damage identification of cantilever structure. At first, damage localisation was accomplished through mode shape decomposition using discrete wavelet transforms. Subsequently, a damage indicator was defined based on the detail coefficients of...
保存先:
主要な著者: | Vafaei, Mohammadreza, Alih, Sophia C., Abd. Rahman, Ahmad Baharuddin, Adnan, Azlan |
---|---|
フォーマット: | 論文 |
出版事項: |
Taylor and Francis Ltd.
2015
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/57685/ http://dx.doi.org/10.1080/15732479.2014.917114 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Adequacy of first mode shape differences for damage identification of cantilever structures using neural networks
著者:: Vafaei, M., 等
出版事項: (2017) -
Seismic damage identification based on integrated artificial neural networks and wavelet transforms
著者:: Vafaei, Mohammadreza
出版事項: (2013) -
Sensor clustering-based approach for structural damage identification under ambient vibration
著者:: Umar, Sarehati, 等
出版事項: (2021) -
Seismic damage detection using pushover analysis
著者:: Adnan, Azlan, 等
出版事項: (2011) -
Experimental study on the efficiency of tapered strip dampers for the seismic retrofitting of damaged non-ductile RC frames
著者:: Vafaei, Mohammadreza, 等
出版事項: (2019)