Imposition of the no-slip boundary condition via modified equilibrium distribution function in Lattice Boltzmann method

A novel scheme for implementation of the no-slip boundary conditions in the lattice Boltzmann method is presented. In detail, we have substituted the classical bounce-back idea by the direct velocity boundary condition specification employing geometric-based manipulation of the equilibrium distribut...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Sharafatmandjoor, Shervin, Che Sidik, Nor Azwadi, Fathalizadeh, Hamidreza
التنسيق: مقال
منشور في: Elsevier 2015
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/id/eprint/55677/
http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.01.003
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:A novel scheme for implementation of the no-slip boundary conditions in the lattice Boltzmann method is presented. In detail, we have substituted the classical bounce-back idea by the direct velocity boundary condition specification employing geometric-based manipulation of the equilibrium distribution functions. In this way we have constructed the equilibrium density function in such a way that it imposes the desired Dirichlet boundary conditions at numerical boundary points. Therefore, in fact a kind of equilibrium boundary condition is made. This specification for general curved solid surfaces is made by means of immersed boundary concepts, but without any need to interpolating density distribution values. On the other hand, the results show that the method presents a faster solution procedure in comparison to the bounce-back scheme.