Empirical mode decomposition-least squares support vector machine based for water demand forecasting
Accurate forecast of water demand is one of the main problems in developing management strategy for the optimal control of water supply system. In this paper, a hybrid model which combines empirical mode decomposition (EMD) and least square support vector machine (LSSVM) model is proposed to forecas...
保存先:
主要な著者: | Shabri, Ani, Samsudin, Ruhaidah |
---|---|
フォーマット: | 論文 |
出版事項: |
International Center for Scientific Research and Studies (ICSRS)
2015
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/54990/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Exchange rate forecasting using modified empirical mode decomposition and least squares support vector machine
著者:: Abdul Rashid, Nur Izzati, 等
出版事項: (2016) -
Empirical Mode Decomposition Coupled with Least Square Support Vector Machine for River Flow Forecasting
著者:: Ismail, Shuhaida, 等
出版事項: (2015) -
Hybridizing GMDH and least squares SVM support vector machine for forecasting tourism demand
著者:: Samsudin, Ruhaidah, 等
出版事項: (2010) -
A hybrid GMDH and least squares support vector machines in time series forecasting
著者:: Samsudin, Ruhaidah, 等
出版事項: (2011) -
Empirical mode decomposition with least square support vector machine model for river flow forecasting
著者:: Ismail, Shuhaida
出版事項: (2016)