Neural network modeling for main steam temperature system
Main Steam Temperature (MST) is non-linear, large inertia, long dead time and load dependant parameters. The paper present MST modeling method using actual plant data by utilizing MATLAB's Neural Network toolbox. The result of the simulation showed the MST model based on actual plant data is po...
保存先:
主要な著者: | Mazalan, Nor A., A. Malek, Azlan, Abdul Wahid, Mazlan, Mailah, Musa |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Penerbit UTM
2014
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/54230/1/NorA.Mazalan2014_Neuralnetworkmodelingformain.pdf http://eprints.utm.my/id/eprint/54230/ http://dx.doi.org/10.11113/jt.v69.3151 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Review of control strategies employing neural network for main steam temperature control in thermal power plant
著者:: Abdul Wahid, Mazlan, 等
出版事項: (2014) -
Main steam temperature modeling based on levenberg-marquardt learning algorithm
著者:: Mazalan, N. A., 等
出版事項: (2013) -
Sensitivity analysis on neural network algorithm for primary superheater spray modeling
著者:: Mazalan, Nor Azizi, 等
出版事項: (2017) -
Primary superheater spray control valve modeling based on Levenberg-Marquardt learning algorithm
著者:: Mazalan, Nor Azizi, 等
出版事項: (2014) -
Vibration prevention of steam turbine by mixing the main demand with vibration signal
著者:: Abu, Aminudin, 等
出版事項: (2014)