A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data
Gene expression data are expected to be of significant help in the development of efficient cancer diagnoses and classification platforms. In order to select a small subset of informative genes from the data for cancer classification, recently, many researchers are analyzing gene expression data usi...
保存先:
主要な著者: | Mohamad, Mohd. Saberi, Omatu, Sigeru, Deris, Safaai, Yoshioka, Michifumi |
---|---|
フォーマット: | 論文 |
出版事項: |
Institute of Electrical and Electronics Engineers
2011
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/44690/ http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6017123 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Selecting a small subset of informative genes from gene expression data by using a modified binary particle swarm optimisation
著者:: Mohammad, Mohd. Saberi, 等
出版事項: (2012) -
An enhancement of binary particle swarm optimization based on the proposed constraint and rule for selecting a small subset of informative genes
著者:: Mohamad, Mohd. Saberi, 等
出版事項: (2010) -
Particle swarm optimization with a modified sigmoid function for gene selection from gene expression data
著者:: Mohamad, Mohd. Saberi, 等
出版事項: (2010) -
An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes
著者:: Mohamad, Mohd. Saberi, 等
出版事項: (2013) -
A new binary particle swarm optimizer to select a smaller subset of genes for leukaemia cancer classification
著者:: Mohamad, Mohd. Saberi, 等
出版事項: (2008)