Improved artificial neural network training based on response surface methodology for membrane flux prediction
This paper presents an improved artificial neural network (ANN) training using response surface methodology (RSM) optimization for membrane flux prediction. The improved ANN utilizes the design of experiment (DoE) technique to determine the neural network parameters. The technique has the advantage...
محفوظ في:
المؤلفون الرئيسيون: | Ibrahim, Syahira, Abdul Wahab, Norhaliza |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
MDPI
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/103244/1/NorhalizaAbdulWahab2022_ImprovedArtificialNeuralNetwork.pdf http://eprints.utm.my/103244/ http://dx.doi.org/10.3390/membranes12080726 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Optimization of artificial neural network topology for membrane bioreactor filtration using response surface methodology
بواسطة: Ibrahim, Syahira, وآخرون
منشور في: (2020) -
Modeling of submerged membrane filtration processes using recurrent artificial neural networks
بواسطة: Yusof, Zakariah, وآخرون
منشور في: (2020) -
Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Predicting the Compressive Strength of POFA Concrete
بواسطة: Ahmad Nurfaidhi Rizalman, وآخرون
منشور في: (2020) -
Response Surface Methodology and Artificial Neural Network Modelling of Membrane Rotating Biological Contactors for Wastewater Treatment
بواسطة: Irfan, M., وآخرون
منشور في: (2022) -
Permeate flux measurement and prediction of submerged membrane bioreactor filtration process using intelligent techniques
بواسطة: Yusuf, Zakariah, وآخرون
منشور في: (2015)