Improved artificial neural network training based on response surface methodology for membrane flux prediction
This paper presents an improved artificial neural network (ANN) training using response surface methodology (RSM) optimization for membrane flux prediction. The improved ANN utilizes the design of experiment (DoE) technique to determine the neural network parameters. The technique has the advantage...
保存先:
主要な著者: | Ibrahim, Syahira, Abdul Wahab, Norhaliza |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
MDPI
2022
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/103244/1/NorhalizaAbdulWahab2022_ImprovedArtificialNeuralNetwork.pdf http://eprints.utm.my/103244/ http://dx.doi.org/10.3390/membranes12080726 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Optimization of artificial neural network topology for membrane bioreactor filtration using response surface methodology
著者:: Ibrahim, Syahira, 等
出版事項: (2020) -
Modeling of submerged membrane filtration processes using recurrent artificial neural networks
著者:: Yusof, Zakariah, 等
出版事項: (2020) -
Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Predicting the Compressive Strength of POFA Concrete
著者:: Ahmad Nurfaidhi Rizalman, 等
出版事項: (2020) -
Response Surface Methodology and Artificial Neural Network Modelling of Membrane Rotating Biological Contactors for Wastewater Treatment
著者:: Irfan, M., 等
出版事項: (2022) -
Permeate flux measurement and prediction of submerged membrane bioreactor filtration process using intelligent techniques
著者:: Yusuf, Zakariah, 等
出版事項: (2015)