Performance Analysis of a Novel Hybrid Segmentation Method for Polycystic Ovarian Syndrome Monitoring
: Experts have used ultrasound imaging to manually determine follicle count and perform measurements, especially in cases of polycystic ovary syndrome (PCOS). However, due to the laborious and error-prone process of manual diagnosis, researchers have explored and developed medical image processing...
Saved in:
Main Authors: | Nazarudin, Asma’ Amirah, Zulkarnain, Noraishikin, Mokri, Siti Salasiah, Wan Zaki, Wan Mimi Diyana, Hussain, Aini, Ahmad, Mohd Faizal, Mohd Nordin, Najaa Aimi |
---|---|
格式: | Article |
語言: | English |
出版: |
Mdpi
2023
|
主題: | |
在線閱讀: | http://eprints.uthm.edu.my/10290/1/J15891_a3d347f8edddeb01c372c95d56a57036.pdf http://eprints.uthm.edu.my/10290/ https://doi.org/10.3390/diagnostics13040750 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Performance Analysis of a Novel Hybrid Segmentation Method
for Polycystic Ovarian Syndrome Monitoring
由: Nazarudin, Asma’ Amirah, et al.
出版: (2023) -
Performance Analysis of a Novel Hybrid Segmentation Method
for Polycystic Ovarian Syndrome Monitoring
由: Nazarudin, Asma’ Amirah, et al.
出版: (2023) -
Performance Analysis of a Novel Hybrid Segmentation Method
for Polycystic Ovarian Syndrome Monitoring
由: Nazarudin, Asma’ Amirah, et al.
出版: (2023) -
Performance Analysis of a Novel Hybrid Segmentation Method
for Polycystic Ovarian Syndrome Monitoring
由: Nazarudin, Asma’ Amirah, et al.
出版: (2023) -
Performance Analysis of a Novel Hybrid Segmentation Method
for Polycystic Ovarian Syndrome Monitoring
由: Nazarudin, Asma’ Amirah, et al.
出版: (2023)