Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms
Radial Basis Function Neural Network (RBFNN) ensembles have long suffered from non-efficient training, where incorrect parameter settings can be computationally disastrous. This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network (SRBFNN)...
保存先:
主要な著者: | , , , , |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
2023
|
主題: | |
オンライン・アクセス: | http://eprints.uthm.edu.my/10078/1/J16174_ee1fefba9e830abb0e36ae31d95d9997.pdf http://eprints.uthm.edu.my/10078/ http://dx.doi.org/10.32604/csse.2023.038912 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|