Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms

Radial Basis Function Neural Network (RBFNN) ensembles have long suffered from non-efficient training, where incorrect parameter settings can be computationally disastrous. This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network (SRBFNN)...

詳細記述

保存先:
書誌詳細
主要な著者: Shehab Abdulhabib Alzaeemi, Shehab Abdulhabib Alzaeemi, Kim Gaik Tay, Kim Gaik Tay, Audrey Huong, Audrey Huong, Saratha Sathasivam, Saratha Sathasivam, Majahar Ali, Majid Khan
フォーマット: 論文
言語:English
出版事項: 2023
主題:
オンライン・アクセス:http://eprints.uthm.edu.my/10078/1/J16174_ee1fefba9e830abb0e36ae31d95d9997.pdf
http://eprints.uthm.edu.my/10078/
http://dx.doi.org/10.32604/csse.2023.038912
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!